Skip to main content

Advertisement

Log in

High-pressure viscosity of glycerol measured by centrifugal-force viscometry

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

As a liquid approaches its glass transition temperature Tg, its viscosity increases rapidly. The glass transition can be induced either by lowering the temperature through Tg or by increasing the pressure (and thereby the density) at constant temperature. The effect of temperature on viscosity is well studied, but the density dependence of viscosity close to Tg is less well understood. Here we report measurements of the viscosity of glycerol, one of the most widely studied glass-forming liquids, at pressures of up to 3 GPa using centrifugal-force viscometry in a diamond-anvil cell. We find that free-volume theory1,2, which ascribes an incom-pressible hard-sphere volume to the molecules, provides a good description of the viscosity over the entire pressure range (and by extrapolation, up to the glass transition at ∼5 GPa). We are thus able to predict the effect of pressure on Tg and on the glass fragility (the structural breakdown in the liquid close to the transition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doolittle, A. K. J. appl. Phys. 22, 1471–1475 (1951).

    Article  CAS  ADS  Google Scholar 

  2. Cohen, M. H. & Turnbull, D. J. chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  ADS  Google Scholar 

  3. Jeong, Y. H. Phys. Rev. A36, 766–773 (1987).

    Article  CAS  ADS  Google Scholar 

  4. Slie, W. M. & Madigosky, W. M. J. chem. Phys. 48, 2810–2817 (1968).

    Article  CAS  ADS  Google Scholar 

  5. McDuffie, G. E. & Kelly, M. V. J. chem. Phys. 41, 2666–2670 (1964).

    Article  CAS  ADS  Google Scholar 

  6. Johari, G. P. & Whalley, E. Faraday Symp. chem. Soc. 6, 23–41 (1972).

    Article  Google Scholar 

  7. Scaife, W. G. S. J. Phys. D: Appl. Phys. 9, 1489–1499 (1976).

    Article  CAS  ADS  Google Scholar 

  8. Sandberg, O., Andersson, P. & Backström, G. in Proc. 7th Symp. thermophys. Prop. 181–184 (1977).

    Google Scholar 

  9. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 61, 57–99 (1926).

    Article  CAS  Google Scholar 

  10. King, H. E., Herbolzheimer, E. & Cook, R. L. J. appl. Phys. 71, 2071–2081 (1992).

    Article  CAS  ADS  Google Scholar 

  11. Barnett, J. D. & Bosco, C. D. J. appl. Phys. 40, 3144–3150 (1969).

    Article  CAS  ADS  Google Scholar 

  12. Dean, J. A. Lange's Handbook of Chemistry (McGraw-Hill, New York, 1985).

    Google Scholar 

  13. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 67, 1–27 (1932).

    Article  Google Scholar 

  14. Matheson, A. J. J. chem. Phys. 44, 695–699 (1966).

    Article  CAS  ADS  Google Scholar 

  15. Haward, R. N. J. Macromol. Sci., Revs. macromol. Chem. C4, 191–242 (1970).

    Article  Google Scholar 

  16. Woodcock, L. V. & Angell, C. A. Phys. Rev. Lett. 47, 1129–1132 (1981).

    Article  CAS  ADS  Google Scholar 

  17. Ben-Amotz, D. & Herschbach, D. R. J. phys. Chem. 94, 1038–1047 (1990).

    Article  CAS  Google Scholar 

  18. Hogenboom, D. L., Webb, W. & Dixon, J. A. J. chem. Phys. 46, 2586–2598 (1967).

    Article  CAS  ADS  Google Scholar 

  19. Adam, G. & Gibbs, J. H. J. Chem. Phys. 43, 139–146 (1965).

    Article  CAS  ADS  Google Scholar 

  20. Angell, C. A. J. non-cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  21. Gupta, P. K. J. Am. Ceram. Soc. 70, C152–C153 (1987).

    Article  Google Scholar 

  22. Laughlin, W. T. Viscous Flow and Volume Relaxation in Simple Glass-Forming Liquids (MIT, 1969).

    Google Scholar 

  23. Kauzmann, W. Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  24. Angell, C. A., Pollard, L. J. & Strauss, W. J. chem. Phys. 50, 2694–2705 (1969).

    Article  CAS  ADS  Google Scholar 

  25. Angell, C. A., Pollard, L. J. & Strauss, W. J. Solution Chem. A, 517–528 (1972).

    Article  Google Scholar 

  26. Oliver, W. F., Herbst, C. A., Lindsay, S. M. & Wolf, G. H. Phys. Rev. Lett. 67, 2795–2798 (1991).

    Article  CAS  ADS  Google Scholar 

  27. Yasutomi, S., Bair, S. & Winer, W. O. J. Trib. 106, 291–303 (1984).

    Article  CAS  Google Scholar 

  28. Karger, N., Vardag, T. & Lüdemann, H.-D. J. chem. Phys. 93, 3437–3444 (1990).

    Article  CAS  ADS  Google Scholar 

  29. O'Reilly, J. M. J. Polym. Sci. 57, 429–444 (1962).

    Article  CAS  ADS  Google Scholar 

  30. Schlosser, H. & Ferrante, J. J. Phys.: Condens. Matter 1, 2727–2730 (1989).

    ADS  Google Scholar 

  31. Piermarini, G. J., Block, S. & Barnett, J. D. J. Appl. Phys. 44, 5377–5382 (1973).

    Article  CAS  ADS  Google Scholar 

  32. DiMarzio, E. A., Gibbs, J. H., Fleming, P. D. & Sanchez, I. C. Macromolecules 9, 763–771 (1976).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbst, C., Cook, R. & King Jr, H. High-pressure viscosity of glycerol measured by centrifugal-force viscometry. Nature 361, 518–520 (1993). https://doi.org/10.1038/361518a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361518a0

  • Springer Nature Limited

This article is cited by

Navigation