Skip to main content
Log in

The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN cosmological models based on the standard Friedmann–Robertson–Walker geometry, the apparent flux density or angular size of standard candles or standard rods varies with redshift in a way that depends on the deceleration parameter q0. (Open universes have q0 < 0.5; closed universes have q0 > 0.5.) At low redshift, however, observational errors are much greater than the differences in q0 expected for different cosmological models, while at high redshift observational uncertainties, particularly at optical wavelengths, and apparent systematic evolutionary changes in sources obscure the expected geometrical effects. Here I show that measurements by very-long-baseline interferometry (VLBI) of compact radio sources associated with active galaxies and quasars may be largely free of evolutionary effects even at substantial redshifts. The relation between angular size and redshift for a sample of these sources indicates a value of q0 close to 0.5, corresponding to cosmological density near the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyle, F. in Paris Symp. Radio Astronomy, IAU Symp. No 9 (ed. Bracewell. R.) 529–532 (1959).

  2. Sandage, A. R. Astrophys. J. 133, 355–392 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  3. Sandage, A. R. Astrophys. J. 173, 485–499 (1973).

    Article  ADS  Google Scholar 

  4. Sandage, A. R. A. Rev. Astr. Astrophys. 26, 561–630 (1988).

    Article  ADS  Google Scholar 

  5. Miley, G. K. Mon. Not. R. astr. Soc. 152, 477–489 (1970).

    Article  ADS  Google Scholar 

  6. Legg T. H. Nature 226, 65–67 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Wardle, J. F. C. & Miley, G. K. Astr. Astrophys. 30, 305–315 (1974).

    ADS  Google Scholar 

  8. Kapahi, V. K. in Observational Cosmology. IAU Symp. No. 124 (ed. Hewitt. A. Burbidge, G. & Fang, L. Z.) 251–265 (1987).

  9. Oort, M. J. A., Katgert, P., Steeman, F. W. M. & Windhorst, R. A. Astr. Astrophys. 179, 41–59 (1987).

    ADS  CAS  Google Scholar 

  10. Singal, A. K. Mon. Not. R. astr. Soc. 233, 87–113 (1988).

    Article  ADS  Google Scholar 

  11. Kapahi, V. K. Astr. J. 97, 1–9 (1989).

    Article  ADS  Google Scholar 

  12. Gopal-Krishna & Wiita, P. J. Astrophys. J. 373, 325–335.

  13. Subramanian, K. & Swarup, G. Mon. Not. R. astr. Soc. 247, 237–243.

  14. Cohen, M. H. in BL Lac Objects (ed. Maraschi, L., Maccacaro, T. & Ulrich, M.-H.) 13–21 (1989).

    Book  Google Scholar 

  15. Pearson, T. J. in Parsec Scale Radio Jets (ed. Zensus, A.) 1–12 (1990).

    Google Scholar 

  16. Pearson, T. J. & Readhead, A. C. S. Astrophys. J. 328, 114–142 (1988).

    Article  ADS  Google Scholar 

  17. Wilkinson, P. N., Polatidis, A., Readhead, A. C. S., Xu, W. & Pearson, T. J. in Sub Arc Second Radio Astronomy (ed. Davis, R. J.) (Cambridge Univ. Press, in the press).

  18. Gurvits, L. I. et al. Astr. Astrophys. 260, 82–88 (1992).

    ADS  Google Scholar 

  19. Ekhart, A. et al. Astr. Astrophys. Suppl. Soc. 67, 121–146 (1987).

    ADS  Google Scholar 

  20. Wehrele, A. et al. Astrophys. J. 391, 589–607 (1992).

    Article  ADS  Google Scholar 

  21. Kellermann, K. I., Sramek, R., Schmidt, M. & Shaffer, D. B. Astr. J. 98, 1195–1207 (1989).

    Article  ADS  Google Scholar 

  22. Fanaroff, B. L. & Riley, J. M. Mon. Not. R. astr. Soc. 167, 31p–35p (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellermann, K. The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 361, 134–136 (1993). https://doi.org/10.1038/361134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361134a0

  • Springer Nature Limited

This article is cited by

Navigation