Skip to main content
Log in

Three-dimensional fluctuation conductivity in superconducting single crystal K3C60 and Rb3C60

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE superconducting transition temperature, TC, defines the point at which the free energies of the superconducting and normal states of a material become equal. Just above TC, thermodynamic fluctuations produce small, transient regions of the superconducting state, giving rise to an anomalous increase in the normal-state conductivity known as paraconductivity. This situation is analogous to the fluctuating regions of correlated spins found near the Curie-Weiss transition in ferromagnets. Such fluctuations are of theoretical significance in that they provide a direct probe of critical phenomena in general, and a stringent test of scaling theories, which describe the approach to the critical point. Paraconductivity effects are strongly dependent on the dimensionality of the system, although for conventional superconductors, three-dimensional fluctuation conductivity has to our knowledge never been observed. Here we report the observation of pure, three-dimensional paraconductivity in single crystals of the recently discovered1 superconductors K3C60 and Rb3C60. In addition to probing the critical state near Tc, these measurements allow the indirect determination of the residual, normal-state resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haddon, R. C. et al. Nature 350, 320 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Xiang, X.-D. et al. Science 256, 1190 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Ogata, H. et al. Jpn J. appl. Phys. 31, L166 (1992).

    Google Scholar 

  4. Aslamasov, L. G. & Larkin, A. I. Phys. Lett. A26, 238 (1968).

    Article  Google Scholar 

  5. Skocpal, W. J. & Tinkham, M. Rep. Prog. Phys. 38, 1049 (1975).

    Article  ADS  Google Scholar 

  6. Maki, K. Prog. theor. Phys. 39, 887 (1968); 40, 193 (1968).

    ADS  Google Scholar 

  7. Thompson, R. S. Phys. Rev. B1, 327 (1970); Physica 55, 296 (1971).

    Article  ADS  Google Scholar 

  8. Maki, K. & Thompson, R. S. Phys. Rev. B39, 2767 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Appel, J. Phys. Rev. Lett. 21, 1164 (1968).

    Article  ADS  Google Scholar 

  10. Schmidt, H. Z. Phys. 216, 336 (1968).

    Article  ADS  Google Scholar 

  11. Hou, J. G., Crespi, V. H. Xiang, X.-D., Zettl, A. & Cohen, M. L. Phys. Rev. Lett. (submitted)

  12. Sparn, G. et al. Phys. Rev. Lett. 68, 1228 (1991).

    Article  ADS  Google Scholar 

  13. Rotter, L. D. et al. Nature 355, 532 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Gelfand, M. P. & Lu, J. P. Phys. Rev. B46, 4367 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Reggiazi, L. & Vaglio, R. Phys. Rev. B44, 9541 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, XD., Hou, J., Crespi, V. et al. Three-dimensional fluctuation conductivity in superconducting single crystal K3C60 and Rb3C60. Nature 361, 54–56 (1993). https://doi.org/10.1038/361054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361054a0

  • Springer Nature Limited

This article is cited by

Navigation