Skip to main content

Advertisement

Log in

Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 01 January 1993

This article has been updated

Abstract

IN the yeast Sacchromyces cerevisiae, addition of glucose to starved cells triggers a transient rise in the intracellular level of cyclic AMP that induces a protein phosphorylation cascade1. The glucose signal is processed by the Cdc25/Ras/adenylyl cyclase pathway2, where the role of Cdc25 is to catalyse the GDP–GTP exchange on Ras3. The molecular mechanisms involved in the regulation of the activity of Cdc25 are unknown. We report here the use of highly selective anti-Cdc25 antibodies4 to demonstrate that Cdc25 is a phospho protein and that in response to glucose it is hyper-phosphorylated, within seconds, by the cyclic AMP-dependent protein kinase. It is also demonstrated that, concomitantly with hyperphosphorylation, Cdc25 partially relocalizes to the cytoplasm, reducing its accessibility to membrane-bound Ras. These results are of general significance because of the highly conserved sequence of Ras–guanyl nucleotide exchange factors from yeasts to mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 01 January 1993

    Nature 360, 762-765 (1992) THE sentence starting on line 29 of this letter should read "After 1 min the cAMP levels decay to an intermediate level and, in parallel, Cdc25 reaches an intermediate state of phosphorylation that is higher than the state of phosphorylation of Cdc25 in glucose-starved cells (Fig.

References

  1. Eraso, P. & Gancedo, J. M. FEBS Lett. 191, 51–54 (1985).

    Article  CAS  Google Scholar 

  2. Engelberg, D., Perlman, R. & Levitzki, A. Cell, Signalling 1, 1–7 (1989).

    Article  CAS  Google Scholar 

  3. Jones, S., Vignais, M. L. & Broach, J. R. Molec. cell Biol. 11, 2641–2646 (1991).

    Article  CAS  Google Scholar 

  4. Gross, E. et al. Molec. cell. Biol. 12, 2653–2661 (1992).

    Article  CAS  Google Scholar 

  5. Nikawa, J.-I., Cameron, S., Toda, T., Ferguson, K. M. & Wigler, M. Genes Dev. 1, 931–937 (1987).

    Article  CAS  Google Scholar 

  6. Mbonyi, K., Van Aelst, L., Argüelles, J. C., Jans, A. W. H. & Thevelein, J. M. Molec. cell. Biol. 10, 4518–4523 (1990).

    Article  CAS  Google Scholar 

  7. Schomerus, C., Munder, T. & Kuntzel, H. Molec. gen. Genet 223, 426–432 (1990).

    Article  CAS  Google Scholar 

  8. Munder, T. & Kuntzel, H. FEBS Lett. 242, 341–345 (1989).

    Article  CAS  Google Scholar 

  9. Munder, T. & Furst, P. Molec. cell. Biol. 12, 2091–2099 (1992)

    Article  CAS  Google Scholar 

  10. Dufau, M. L., Tsuruhara, T., Horner, K. A., Podesta, E. & Catt, K. J. Proc. natn. Acad. Sci. U.S.A 74, 3412–3423 (1977).

    Article  ADS  Google Scholar 

  11. Hughes, D. A., Fukui, Y. & Yamamoto, M. Nature 344, 355–357 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Simon, M. A., Bowtell, D. D. L., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Cell 67, 701–716 (1991)

    Article  CAS  Google Scholar 

  13. Martegani, E. et al. EMBO J. 11, 2151–2157 (1992).

    Article  CAS  Google Scholar 

  14. Li, B.-Q., Kaplan, D., Kung, H.-f. & Kamata, T. Science 256, 1456–1459 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Rubin, G. M. J. biol Chem. 248, 3860–3875 (1973)

    CAS  PubMed  Google Scholar 

  16. Cairns, B. R., Ramer, S. W. & Kornberg, R. D. Genes Dev. 6, 1305–1318 (1992).

    Article  CAS  Google Scholar 

  17. Segal, M., Marbach, I., Engelberg, D., Simchen, G., & Levitzki, A. J. biol. Chem. (in the press).

  18. Gietz, R. D., & Sugino, A. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, E., Goldberg, D. & Levitzki, A. Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras. Nature 360, 762–765 (1992). https://doi.org/10.1038/360762a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360762a0

  • Springer Nature Limited

This article is cited by

Navigation