Skip to main content

Advertisement

Log in

A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NEUROPSYCHIATRIC disorders such as anxiety, depression, migraine, vasospasm and epilepsy may involve different subtypes of the 5-hydroxytryptamine (5-HT) receptor1,2. The IB subtype, which has a unique pharmacology, was first identified in rodent brain3–7. But a similar receptor could not be detected in human brain6, suggesting the absence in man of a receptor with equivalent function. Recently a human receptor gene was isolated (designated 5-HT1B receptor8,9, 5-HT1Dβ receptor10,11, or S12 receptor12) which shares 93% identity of the deduced protein sequence with rodent 5-HT1B receptors13–15. Although this receptor is identical to rodent 5-HT1B receptors in binding to 5-HT, it differs profoundly in binding to many drugs. Here we show that replacement of a single amino acid in the human receptor (threonine at residue 355) with a corresponding asparagine found in rodent 5-HT1B receptors renders the pharmacology of the receptors essentially identical. This demonstrates that the human gene does indeed encode a 1B receptor, which is likely to have the same biological functions as the rodent 5-HT1B receptor. In addition, these findings show that minute sequence differences between homologues of the same receptor from different species can cause large pharmacological variation. Thus, drug–receptor interactions should not be extrapolated from animal to human species without verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartig, P. R. et al. Neuropsychopharmacology 3, 335–347 (1990).

    CAS  PubMed  Google Scholar 

  2. Peroutka, S. J. Neuropharmacology 31, 609–613 (1992).

    Article  CAS  Google Scholar 

  3. Pedigo, N. W., Yamamura, H. I. & Nelson, D. L. J. Neurochem. 36, 220–226 (1981).

    Article  CAS  Google Scholar 

  4. Schnellman, R. G., Waters, S. J. & Nelson, D. L. J. Neurochem. 42, 65–70 (1984).

    Article  Google Scholar 

  5. Hoyer, D., Engel, G. & Kalkman, H. O. Eur. J. Pharmac. 118, 1–12 (1985).

    Article  CAS  Google Scholar 

  6. Hoyer, D., Engel, G. & Kalkman, H. O. Eur. J. Pharmac. 118, 13–23 (1985).

    Article  CAS  Google Scholar 

  7. Hoyer, D. & Middlemiss, D. N. Trends pharmac. Sci. 10, 130–132 (1989).

    Article  CAS  Google Scholar 

  8. Jin, H. et al. J. biol. Chem. 267, 5735–5738 (1992).

    CAS  PubMed  Google Scholar 

  9. Hamblin, M. W., Metcalf, M. A., McGuffin, R. W. & Karpells, S. Biochem. biophys. Res. Commun. 184, 752–759 (1992).

    Article  CAS  Google Scholar 

  10. Weinshank, R. L. et al. Proc. natn. Acad. Sci. U.S.A. 89, 3630–3634 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Demchyshyn, L. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5522–5526 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Olav-Levy, F. et al. J. biol. Chem. 267, 7553–7562 (1992).

    Google Scholar 

  13. Voigt, M. M., Laurie, D. J., Seeburg, P. H. & Bach, A. EMBO J. 10, 4017–4023 (1991).

    Article  CAS  Google Scholar 

  14. Adham, N. et al. Molec. Pharmac. 41, 1–7 (1992).

    CAS  Google Scholar 

  15. Maroteaux, L. et al. Proc. natn. Acad. Sci. U.S.A. 89, 3020–3024 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Suryanarayana, A., Daunt, D. A., VonZastrow, M. & Kobilka, B. K. J. biol. Chem. 266, 15488–15492 (1991).

    CAS  PubMed  Google Scholar 

  17. Guan, X. G., Peroutka, S. J. & Kobilka, B. K. Molec. Pharmac. 41, 695–698 (1992).

    CAS  Google Scholar 

  18. Albert, P. R. et al. J. biol. Chem. 265, 5825–5832 (1990).

    CAS  PubMed  Google Scholar 

  19. Kobilka, B. K. et al. Nature 329, 75–79 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Fargin, A. et al. J. biol. Chem. 264, 4848–4852 (1989).

    Google Scholar 

  21. Findlay, J. & Eliopoulos, E. Trends pharmac. Sci. 11, 492–499 (1990).

    Article  CAS  Google Scholar 

  22. Hamblin, M. W. & Metcalf, M. A. Molec. Pharmac. 40, 143–148 (1991).

    CAS  Google Scholar 

  23. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J. & Capon, D. J. Cell 56, 487–493.

  24. McPherson, G. A. Comp Prog. Biomed. 17, 107–114 (1983).

    Article  CAS  Google Scholar 

  25. Munson, P. J. & Rodbard, D. Analyt. Biochem. 107, 220–239 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oksenberg, D., Marsters, S., O'Dowd, B. et al. A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360, 161–163 (1992). https://doi.org/10.1038/360161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360161a0

  • Springer Nature Limited

This article is cited by

Navigation