Skip to main content
Log in

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 Å and ∼20–500 Å respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 Å for some metallophosphates3–5 and ∼14 Å for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 Å to 100 Å or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IUPAC Manual of Symbols and Terminology Pure appl. Chem. 31, 578 (1972).

  2. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types, 2nd Edn (Butterworths, London, 1988).

    Google Scholar 

  3. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowder, C. Nature 331, 698–699 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Dessau, R. M., Schlenkar, J. L. & Higgins, J. B. Zeolites 10, 522–524 (1990).

    Article  CAS  Google Scholar 

  5. Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A. & Kessler, H. Nature 352, 320–323 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Moore, P. B. & Shen, J. Nature 306, 356–358 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Iler, R. K. The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  8. Pinnavaia, T. J. Science 220, 365–371 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Landis, M. E. et al. J. Am. chem. Soc. 113, 3189–3190, 1991.

    Article  CAS  Google Scholar 

  10. Vaughan, D. E. W. & Lussier, R. J. Proc. 5th int. Conf. Zeolites (ed. Rees, L. V. C.) 94–100 (Heyden, London, 1980).

    Google Scholar 

  11. Vaughan, D. E. W. Am. chem. Soc. Symp. Series 368, 308–325 (1988).

    CAS  Google Scholar 

  12. Tindwa, R. M., Ellis, D. K., Peng, G. Z. & Clearfield, A. J. chem. Soc. Faraday Trans. 1, 81, 545–548 (1985).

    Article  CAS  Google Scholar 

  13. Yanagisawa, T., Shimizu, T., Kazuyuki, K. & Kato, C. Bull. Chem. Soc. Jpn 63, 988–992 (1990).

    Article  CAS  Google Scholar 

  14. Kresge, C. T., Leonowicz, M. E., Roth, W. J. & Vartuli, J. C. U.S. Patent No. 5,098,684 (1992); U.S. Patent No. 5,102,643 (1992).

  15. Beck, J. S. et al. U.S. Patent No. 5,108,725 (1992).

  16. Beck, J. S. U.S. Patent No. 5,057,296 (1991).

  17. Ekwall, P. Advances in Liquid Crystals, Vol. 1 (ed. Brown, G. H.) (Academic, New York, 1971).

    Google Scholar 

  18. Ekwall, P., Mandell, L. & Fontell, K. Liquid Crystals (ed. Brown, G. H.) 325–334 (Gordon and Breach, London, 1969).

    Google Scholar 

  19. Luzzati, V. Biological Membranes (ed. Chapman, D.) 71–123 (Academic, New York, 1968).

    Google Scholar 

  20. Tiddy, G. J. T. Phys. Rep. 57, No. 1, 1–46 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Winsor, P. A. Chem. Rev. 68, No. 1, 1–40 (1968).

    Article  CAS  Google Scholar 

  22. Goodman, J. F. & Clunie, J. S. Electron Microscopy of Liquid Crystals, Liquid Crystals and Plastic Crystals, Vol. 2 (eds Gray, G. W. & Winsor, P. A.) 1–23 (Wiley, New York, 1974).

    Google Scholar 

  23. Speght, P. P. A., Skoulios, A. E. & Luzzati, V. Acta cryst. 14, 866–872 (1961).

    Article  Google Scholar 

  24. Komarov, V. S. & Kuznetsova, T. F. Vesti Akad. Navuk BSSR No. 2, 22–27 (1978).

  25. Luzzati, V. & Speght, P. P. A. Nature 215, 701–704 1967.

    Article  ADS  CAS  Google Scholar 

  26. Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area, and Porosity, 2nd Edn (Academic, New York, 1982).

    Google Scholar 

  27. Barrett, E. P., Joyner, L. G. & Halenda, P. P. J. Am. chem. Soc. 73, 373–380 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kresge, C., Leonowicz, M., Roth, W. et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992). https://doi.org/10.1038/359710a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359710a0

  • Springer Nature Limited

This article is cited by

Navigation