Skip to main content
Log in

Requirement for a functional Rb-1 gene in murine development

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HUMAN retinoblastomas can occur both as hereditary and as sporadic cases. Knudson's proposal1 that they result from two mutational events, of which one is present in the germ line in hereditary cases, has been confirmed by more recent molecular analysis, which has shown both events to involve loss or mutational inactivation of the same gene, RB-1 (ref. 2). RB-1 heterozygosity also predisposes to osteosarcoma, and RB-1 allele losses are seen in sporadic lung, breast, prostate and bladder carcinomas3–7. RB-1 is expressed in most, if not all, tissues and codes for a nuclear phosphoprotein which becomes hypophosphorylated in the GO growth arrest state and in the Gl phase of the cell cycle2. To gain a further insight ino the role of RB-1 we and other groups8,9 have generated mice carrying an inactivated allele of the homologous gene, Rb-1 (ref. 10), by gene targeting11. We report here that young heterozygous mice do not appear abnormal and do not develop retinoblastoma at a detectable frequency. However, homozygous mutant embryos fail to reach term and show a number of abnormalities in neural and haematopoietic development. Broadly similar results are reported by the other groups8,9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knudson, A. G. Proc. natn. Acad. Sci. U.S.A. 68, 820–823 (1971).

    Article  ADS  Google Scholar 

  2. Weinberg, R. A. Trends biochem. Sci. 15, 199–202 (1990).

    Article  CAS  Google Scholar 

  3. Lee, E. Y. et al. Science 241, 218–221 (1988).

    Article  CAS  ADS  Google Scholar 

  4. Yokota, J. et al. Oncogene 3, 471–475 (1988).

    CAS  PubMed  Google Scholar 

  5. Stralton, M. R. et al. Br. J. Cancer 60, 202–205 (1989).

    Article  Google Scholar 

  6. Shew, J. Y., Ling, N., Yang, X. M., Fodstad, O. & Lee, W.-H. Oncogene Res. 4, 205–214 (1989).

    CAS  PubMed  Google Scholar 

  7. Cance, W. G., Brennan, M. F., Dudas, M. E., Huang, C.-M. & Cordon-Cardo, C. New Engl. J. Med. 323, 1457–1462 (1990).

    Article  CAS  Google Scholar 

  8. Lee, E. Y.-H. P. et al. Nature, 359, 288–294 (1992).

    Article  CAS  ADS  Google Scholar 

  9. Jacks, T. et al. Nature, 359, 295–300 (1992).

    Article  CAS  ADS  Google Scholar 

  10. Bernards, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6474–6478 (1989).

    Article  CAS  ADS  Google Scholar 

  11. Capecchi, M. R. Science 244, 1288–1292 (1989).

    Article  CAS  ADS  Google Scholar 

  12. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).

    Article  CAS  ADS  Google Scholar 

  13. Smith, A. G. & Hooper, M. L. Devl Biol. 121, 1–9 (1987).

    Article  CAS  Google Scholar 

  14. Moreau, J.-F. et al. Nature 336, 690–692 (1988).

    Article  CAS  ADS  Google Scholar 

  15. Smith, A. G. et al. Nature 336, 688–690 (1988).

    Article  CAS  ADS  Google Scholar 

  16. Williams, R. L. et al. Nature 336, 684–687 (1988).

    Article  CAS  ADS  Google Scholar 

  17. Te Riele, H., Robanus Maandag, E. & Berns, A. Proc. natn. Acad. Sci. U.S.A. 89, 5128–5132 (1992).

    Article  CAS  ADS  Google Scholar 

  18. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  19. Kaster, K. R., Burgett, S. G., Rao, R. N. & Ingolia, T. D. Nucleic Acids Res. 11, 6895–6911 (1983).

    Article  CAS  Google Scholar 

  20. Adra, C. N., Boer, P. H. & McBurney, M. W. Gene 60, 65–74 (1987).

    Article  CAS  Google Scholar 

  21. Hu, Q., Dyson, N. & Harlow, E. EMBO J. 9, 1147–1155 (1990).

    Article  CAS  Google Scholar 

  22. Dive, C. & Wyllie, A. H. in Frontiers in Pharmacology: Cancer Chemotherapy (eds Hickman, J. A. & Tritton, T. T.) (Blackwell Scientific, Oxford, in the press).

  23. Szekely, L. et al. Cell Growth Differ. 3, 149–156 (1992).

    CAS  PubMed  Google Scholar 

  24. Te Riele, H., Robanus Maandag, E., Clarke, A., Hooper, M. & Berns, A. Nature 348, 649–651 (1990).

    Article  CAS  ADS  Google Scholar 

  25. Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. T. & Seidman, J. G. Molec. cell. Biol. 12, 2391–2395 (1992).

    Article  CAS  Google Scholar 

  26. Mansour, S. L., Thomas, K. R. & Cappecchi, M. R. Nature 336, 348–352 (1988).

    Article  CAS  ADS  Google Scholar 

  27. McBurney, M. W. et al. Nucleic Acids Res. 19, 5755–5761 (1991).

    Article  CAS  Google Scholar 

  28. Colbere-Garapin, F., Chousterman, S., Horodniceanu, F., Kourilsky, P. and Garapin, A.-X. Proc. natn. Acad. Sci. U.S.A. 76, 3755–3759 (1979).

    Article  CAS  ADS  Google Scholar 

  29. Van der Lugt, N., Robanus Maandag, E., Te Riele, H., Laird, P. W. & Berns, A. Gene 105, 263–267 (1991).

    Article  CAS  Google Scholar 

  30. Moore, G. E., Gerner, R. E. & Franklin, H. A. J. Am. med. Assoc. 199, 519–524 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A., Maandag, E., van Roon, M. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992). https://doi.org/10.1038/359328a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359328a0

  • Springer Nature Limited

This article is cited by

Navigation