Skip to main content
Log in

Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CYSTIC fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane Cl channel regulated by cyclic AMP-dependent phosphorylation and by intracellular ATP1–7. Mutations in CFTR cause cystic fibrosis8–10 partly through loss of cAMP-regulated Cl permeability from the plasma membrane of affected epithelia11,12. The most common mutation in cystic fibrosis is deletion of phenylalanine at residue 508 (CFTRΔF508) (ref. 10). Studies on the biosynthesis13,14 and localization15 of CFTRΔF508 indicate that the mutant protein is not processed correctly and, as a result, is not delivered to the plasma membrane. These conclusions are consistent with earlier functional studies which failed to detect cAMP-stimnlated Cl channels in cells expressing CFTRΔF508 (refs 16,17). Chloride channel activity was detected, however, when CFTRΔF508 was expressed in Xenopus oocytes18, Vero cells19 and Sf9 insect cells20. Because oocytes and Sf9 cells are typically maintained at lower temperatures than mammalian cells, and because processing of nascent proteins can be sensitive to temperature21, we tested the effect of temperature on the processing of CFTRΔF508. Here we show that the processing of CFTRΔF508 reverts towards that of wild-type as the incubation temperature is reduced. When the processing defect is corrected, cAMP-regulated Cl channels appear in the plasma membrane. These results reconcile previous contradictory observations and suggest that the mutant most commonly associated with cystic fibrosis is temperature-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. P. et al. Science 253, 202–205 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Bear, C. E. et al. Cell 68, 809–818 (1992).

    Article  CAS  Google Scholar 

  3. Tabcharani, J. A., Chang, X.-B., Riordan, J. R. & Hanrahan, J. W. Nature 352, 628–631 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Berger, H. A. et al. J. clin. Invest. 88, 1422–1431 (1991).

    Article  CAS  Google Scholar 

  5. Rich, D. P. et al. Science 253, 205–207 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Cheng, S. H. et al. Cell 66, 1027–1036 (1991).

    Article  CAS  Google Scholar 

  7. Anderson, M. P. et al. Cell 67, 775–784 (1991).

    Article  CAS  Google Scholar 

  8. Rommens, J. M. et al. Science 245, 1059–1065 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Riordan, J. R. et al. Science 245, 1066–1073 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Kerem, B. et al. Science 245, 1073–1080 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Boat, T. F., Welsh, M. J. & Beaudet, A. L. in The Metabolic Basis of Inherited Disease Vol. 6 (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2649–2680 (McGraw-Hill, New York, 1989).

    Google Scholar 

  12. Quinton, P. M. FASEB J. 4, 2709–2717 (1990).

    Article  CAS  Google Scholar 

  13. Cheng, S. H. et al. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  14. Gregory, R. J. et al. Molec. cell. Biol. 11, 3886–3893 (1991).

    Article  CAS  Google Scholar 

  15. Denning, G. M., Ostedgaard, L. S. & Welsh, M. J. J. Cell Biol. 118, 551–559 (1992).

    Article  CAS  Google Scholar 

  16. Rich, D. P. et al. Nature 347, 358–363 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Anderson, M. P., Rich, D. R., Gregory, R. J., Smith, A. E. & Welsh, M. J. Science 251, 679–682 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Drumm, M. L. et al. Science 254, 1797–1799 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Dalemans, W. et al. Nature 354, 524–528 (1991).

    Article  ADS  Google Scholar 

  20. Bear, C. E., Jensen, T. J. & Riordan, J.R. Biophys. J. 61, A127 (1992).

    Google Scholar 

  21. Machamer, C. E. & Rose, J. K. J. biol. Chem. 263, 5955–5960 (1988).

    CAS  PubMed  Google Scholar 

  22. Ljunggren, H.-G. et al. Nature 346, 476–480 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Kartner, N. et al. Cell 64, 681–691 (1991).

    Article  CAS  Google Scholar 

  24. Gilbert, I. A., Fouke, J. A. & McFadden, E. R. Jr J. appl. Physiol. 63, 1681–1691 (1987).

    Article  CAS  Google Scholar 

  25. Deal, E. C. Jr, McFadden, E. R. Jr, Ingram, R. H. Jr & Jaeger, J. J. J. appl. Physiol. 46, 484–490 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denning, G., Anderson, M., Amara, J. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764 (1992). https://doi.org/10.1038/358761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358761a0

  • Springer Nature Limited

This article is cited by

Navigation