Skip to main content
Log in

Action spectrum for DMA damage in alfalfa lowers predicted impact of ozone depletion

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DEPLETION of stratospheric ozone will increase the intensity of solar mid-ultraviolet (280–320 nm) radiation reaching the biosphere1. Predictions of increases in biologically effective ultraviolet radiation require knowledge of both the solar spectral intensity and the wavelength-dependent sensitivity (action spectrum) for damaging the biological target2. A generalized action spectrum for plant damage encompassing wavelengths from 280 to 313 nm3–5 has been widely used to predict the consequences of ozone depletion. Calculations6 based on this spectrum and new satellite measurements of atmospheric ozone suggest that plants will be among those organisms most severely affected. Here we report an absolute action spectrum for cyclobutyl pyrimidine dimer induction in DNA in intact alfalfa seedlings, which reveals damage by wavelengths as long as 365 nm. Calculations based on this new action spectrum predict significantly smaller increases in biologically effective ultraviolet radiation resulting from ozone depletion, particularly at high latitudes, than calculations based on either the generalized plant action spectrum or the action spectrum for damaging unshielded DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jagger, J. Solar-UV Actions on Living Cells (Praeger, New York, 1985).

    Google Scholar 

  2. Setlow, R. B. Proc. natn. Acad. Sci. U.S.A. 71, 3363–3366 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Caldwell, M. M. Ecol. Monogr. 38, 243–268 (1968).

    Article  Google Scholar 

  4. Caldwell, M. M. in Photophysiology (ed. Giese, A. C.) 6, 131–177 (Academic, New York, 1971).

    Book  Google Scholar 

  5. Caldwell, M. M., Camp, L. B., Warner, C. W. & Flint, S. D. in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life (eds Worrest, R. C. & Caldwell, M. M.) 87–111 (Springer, Berlin, 1986).

    Book  Google Scholar 

  6. Madronich, S. Geophys. Res. Lett. 19, 37–40 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Sutherland, B. M., Harber, L. C. & Kochevar, I. E. Cancer Res. 40, 3181–3185 (1980).

    CAS  PubMed  Google Scholar 

  8. Freeman, S. E. et al. Analyt. Biochem. 158, 119–129 (1986).

    Article  CAS  Google Scholar 

  9. Quaite, F. E., Sutherland, B. M. & Sutherland, J. C. Appl. theor. Electroph. 2, 171–175 (1992).

    CAS  Google Scholar 

  10. Coohill, T. P. in Topics in Photomedicine (ed. Smith, K. C.) 1–37 (Plenum, New York).

  11. Caldwell, M. M., Robberrecht, R. & Flint, S. D. Physiol. Plant. 58, 445–450 (1983).

    Article  CAS  Google Scholar 

  12. Freeman, S. E. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5605–5609 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Emrick, A. & Sutherland, J. C. Photochem. Photobiol. 49, 35S (1989).

    Google Scholar 

  14. Tevini, M., Braun, J. & Fieser, G. Photochem. Photobiol. 53, 329–333 (1991).

    Article  CAS  Google Scholar 

  15. Johns, H. E. & Rauth, M. Photochem. Photobiol. 4, 673–692 (1965).

    Article  CAS  Google Scholar 

  16. Carrier, W. L. & Setlow, R. B. J. Bact. 102, 178–186 (1970).

    CAS  PubMed  Google Scholar 

  17. Sutherland, J. C. et al. Analyt. Biochem. 163, 446–457 (1987).

    Article  CAS  Google Scholar 

  18. Shettle, E. P., Nack, M. L. & Green, A. E. S. in Impacts of Climatic Change on the Biosphere 1: Ultraviolet Radiation Effects (eds Nachtwey, D. S., Caldwell, M. M. & Biggs, R. H. ) 2.38–2.49 (National Technical Information Service, Springfield, VA, 1975).

    Google Scholar 

  19. Helbling, E. W., Villafane, V., Ferrario, M. & Holm-Hansen, O. Mar. Ecol. Prog. Ser. 80, 89–100 (1992).

    Article  ADS  Google Scholar 

  20. Lubin, D. et al. J. geophys. Res. 97, 7817–7828 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Ryan, K. G. J. Photochem. Photobiol. 13, 235–240 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaite, F., Sutherland, B. & Sutherland, J. Action spectrum for DMA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358, 576–578 (1992). https://doi.org/10.1038/358576a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358576a0

  • Springer Nature Limited

This article is cited by

Navigation