Skip to main content
Log in

Alteration of tektite to form weathering products

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECENT use of tektites as evidence for a bolide impact at the Cretaceous/Tertiary (K/T) boundary has focused attention on their long-term stability1–5. It was proposed in these studies that residual clay features with the spherical tektite morphology result from in situ alteration of the original glassy material. By contrast, examination of tektite alteration as an analogue for the long-term degradation of nuclear waste glass has revealed no evidence of alteration, hydration or devitrification either for samples found in nature or for those reacted in the laboratory6–9: no residual clay minerals were observed, and therefore the glass was interpreted as having reacted by a complete dissolution or etching process10–12. Here we show that these apparently incongruent observations can be reconciled through understanding the relationship between the environment in which the glass reacts and the chemical processes that control the reaction rate. We have examined both natural and experimental alteration of tektites and have found that, under conditions of restricted water contact, tektite reaction is dominated by water diffusion and in situ hydrolysis of the glass structure, followed by restructuring of the silicate network to form clays. Over time, the effective rate for these processes is lower than that for etching. Thus alteration of tektites to clays, as observed at the K/T boundary, can proceed only under conditions of limited water contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montanari, A. et al. Geology 11, 668–671 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Sigurdsson, H. et al. Nature 349, 482–487 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Margolis, S., Claeys, P. & Kyte, F. Science 251, 1594–1597 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Kastner, M., Asaro, F., Alvarez, W. & Alvarez, L. J. non-cryst. Solids 67, 463–464 (1984).

    Article  ADS  Google Scholar 

  5. Izett, G., Dalrymple, G. & Snee, L. Science 252, 1539–1542 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Barkatt, A. A. et al. Geochim. cosmochim. Acta 48, 361–371 (1984).

    Article  ADS  CAS  Google Scholar 

  7. O'Keefe, J. Advances in Ceramics. Vol. 20, Nuclear Waste Management II, 689–692 (American Ceramic Society Inc., Westerville, 1986).

    Google Scholar 

  8. Glass, B. P. J. non-cryst. Solids 67, 333–344 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Lutze, W. & Ewing, R. (eds) Radioactive Waste Forms of the Future (North Holland, New York, 1988).

  10. Ewing, R. C. Scientific Basis for Nuclear Waste Management I, 57–68 (Plenum, New York, 1979).

    Chapter  Google Scholar 

  11. Berger, R. & Ericson, J. in Recent Advances in Science and Technology of Materials (ed. Bishay, A.) (Plenum, New York, 1974).

    Google Scholar 

  12. LaMarche, P. H., Rauch, F. & Lanford, W. A. J. non-cryst. Solids 67, 361–369 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Friedman, I. & Long, W. D. Science 191, 347–352 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Mazer, J. J., Stevenson, C. M., Ebert, W. L. & Bates, J. K. Am. Antiq. 56, 504–513 (1991).

    Article  Google Scholar 

  15. Abrajano, T. A., Bates, J. K., Woodland, A. B., Bradley, J. P. & Bourcier, W. L. Clays Clay Miner. 38, 537–548 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Advocat, T., Crovisier, J., Vernaz, E., Ehret, G. & Charpentier, H. Mat. Res. Soc. Symp. Proc. Vol. 212, 57–64 (Pittsburgh, 1991).

    Google Scholar 

  17. Kring, D. A. & Boynton, W. V. Geochim. cosmochim. Acta 55, 1737–1742 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Jiang, X. & Peacor, D. Clays Clay Miner. 39, 1–13 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Brindley, G. W. & Brown, G. in Crystal Structures of Clay Minerals and their X-Ray Identification (Mineralogical Society, London, 1980).

    Book  Google Scholar 

  20. Bornhold, B. D. & Giresse, P. J. sedim. Petrol. 55, 653–664 (1985).

    CAS  Google Scholar 

  21. Montanari, A. J. sedim. Petrol. 61, 315–339 (1991).

    CAS  Google Scholar 

  22. Bursill, L. A. J. Solid State Chem. 10, 72–94 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Banfield, J. F., Veblen, D. R. & Smith, D. J. Am. Miner. 76, 343–353 (1991).

    CAS  Google Scholar 

  24. Bates, J. K., Bradley, J. P. & Bourcier, W. L. High-Level Radioactive Waste Management: Proc. 2nd ann. int. Conf., Vol. 1, 720–727 (American Nuclear Society, La Grange Park, 1991).

    Google Scholar 

  25. Ebert, W. & Bates, J. K. Mat. Res. Soc. Symp. Proc. Vol. 176, 339–346 (Pittsburgh, 1990).

    Google Scholar 

  26. Friedman, I. & Smith, R. Am. Antiq. 25, 476–522 (1960).

    Article  Google Scholar 

  27. Marshall, R. R. Geol. Soc. Am. Bull. 72, 1493–1520 (1961).

    Article  ADS  CAS  Google Scholar 

  28. Lee, R. R., Leich, D. A., Tombrello, T. A., Ericson, J. E. & Friedman, I. Nature 250, 44–47 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazer, J., Bates, J., Bradley, J. et al. Alteration of tektite to form weathering products. Nature 357, 573–576 (1992). https://doi.org/10.1038/357573a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357573a0

  • Springer Nature Limited

This article is cited by

Navigation