Skip to main content

Advertisement

Log in

Possible methane-induced polar warming in the early Eocene

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECONSTRUCTIONSof early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions 1–5. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values6. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally7. Oceanic heat transport has been postulated as a mechanism for heating high latitudes8–10, but it is difficult to explain the dynamics that would achieve this7,11. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds12–14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estes, R. & Hutchison, J. H. Palaeogeogr. Palaeoclimatol Palaeoecol. 30, 325–347 (1980).

    Article  Google Scholar 

  2. Schweitzer, H.-J. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 297–311 (1980).

    Article  Google Scholar 

  3. Kennett, J. P. & Stott, L. D. Nature 353, 225–229 (1991).

    Article  ADS  Google Scholar 

  4. Kemp, E. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 24, 169–208 (1978).

    Article  Google Scholar 

  5. Case, J. A., in Geology and Palaeontology of Seymour Island, Antarctic Peninsula (eds Feldmann, R. M. & Woodburne, M. O.) 523–530 (Geol. Soc. Am., Boulder, Colorado, 1988).

    Book  Google Scholar 

  6. Shackleton, N. J. & Boersma, A. Geol. Soc. Lond. J. 138, 153–157 (1981).

    Article  Google Scholar 

  7. Crowley, T. J. Quat. Sci. Rev. 10, 275–282 (1991).

    Article  ADS  Google Scholar 

  8. Barron, E. J. Paleoceanography 2, 729–739 (1987).

    Article  ADS  Google Scholar 

  9. Rind, D. & Chandler, M. J. geophys. Res. 96, 7437–7461 (1991).

    Article  ADS  Google Scholar 

  10. Crowley, T. J. Paleoceanography 6, 387–394 (1991).

    Article  ADS  Google Scholar 

  11. Sloan, L. C. & Walker, J. C. G. Geophys. Res. Lett. (submitted).

  12. Pollack, J. B. & McKay, C. P. J. atmos. Sci. 42, 245–262 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Kinne, S. & Toon, O. B. Geophys. Res. Lett. 17, 373–376 (1990).

    Article  ADS  Google Scholar 

  14. McCormick, M. P., Trepte, C. R. & Pitts, M. C. J. geophys. Res. 94, 11241–11251 (1989).

    Article  ADS  Google Scholar 

  15. World Meteorological Organization/United Nations Environment Programme Climate Change, The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).

  16. Sheppard, J. C., Westberg, H., Hopper, J. F., Ganesan, K. & Zimmerman, P. J. geophys. Res. 87, 1305–1312 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Cicerone, R. J. & Oremland, R. S. Glob. Biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Ronov, A. B., Khain, V. Y. & Balukhovskiy, A. N. Int. Geol. Rev. 21, 415–446 (1979).

    Article  Google Scholar 

  19. Askin, R. A. in Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldmann, R. M. & Woodburne, M. O.) 131–135 (Geol. Soc. Am., Boulder, Colorado, 1988).

    Book  Google Scholar 

  20. Sloan, L. C. thesis, Pennsylvania State Univ. (1990).

  21. Rasmussen, R. A. & Kahlil, M. A. K. J. geophys. Res. 86, 9826–9832 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Rinsland, C. P. et al. J. geophys. Res. 89, 7259–7256 (1984).

    Article  ADS  CAS  Google Scholar 

  23. McCormick, M. P. & Trepte, C. R. J. geophys. Res. 92, 4297–4306 (1987).

    Article  ADS  Google Scholar 

  24. Ramanathan, V. et al. Rev. Geophys. 25, 1441–1482 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Ramanathan, V. et al. Science 243, 57–59 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Arthur, M. A., Allard, D. & Hinga, K. R. Geol. Soc. Am. Prog. Vol. 23, 178 (1992).

    Google Scholar 

  27. Berner, R. Am. J. Sci. 291, 339–376 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Barron, E. J. & Washington, W. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 103–133 (1982).

    Article  Google Scholar 

  29. Wolfe, J. A. & Upchurch, G. R. Jr Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 33–77 (1987).

    Article  Google Scholar 

  30. Haq, B. U., Hardenbol, J. & Vail, P. R. Science 235, 1156–1167 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Shackleton, N. J., Hall, M. A. & Boersma, A. Init. Rep. Deep Sea Drilling Proj. 74, 599–612 (US Govt Printing Office, Washington DC, 1984).

    Google Scholar 

  32. Miller, K. G., Janacek, T. R., Katz, M. E. & Keil, D. J. Paleoceanography 2, 741–761 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, L., Walker, J., Moore, T. et al. Possible methane-induced polar warming in the early Eocene. Nature 357, 320–322 (1992). https://doi.org/10.1038/357320a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357320a0

  • Springer Nature Limited

This article is cited by

Navigation