Skip to main content

Advertisement

Log in

Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE Greenland, Iceland and Norwegian (GIN) seas are important regulators of heat transport in the Northern Hemisphere and of ocean-atmosphere CO2exchange1–5. Rapid changes in the circulation of surface and deep waters in this region may induce nonlinear climatic effects and climate instabilities2,3. Here we present carbon and oxygen isotope data that provide a record of circulation changes in the GIN seas during and at the termination of the Last Glacial Maximum (LGM). Inflow of nutrient-depleted waters from the GIN seas to form intermediate waters of the North Atlantic resulted in nutrient enrichment of North Atlantic deep water and consequent enhanced drawdown of atmospheric CO2, contributing to the lower atmospheric P C O 2 during the LGM. The onset of deglaciation occurred at a time of low salinity in the GIN seas and thus of reduced thermohaline circulation. Although strong thermohaline circulation was later reinitiated in the North Atlantic as deglaciation proceeded, it cannot therefore have caused the onset of warming. Similarly, we find that rapid changes in thermohaline circulation cannot account for the transient return to a cooler climate during the Younger Dryas episode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle, E. A. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  2. Dickson, R. R. et al. Prog. Oceanogr. 20, 103–151 (1988).

    Article  ADS  Google Scholar 

  3. Broecker, W. S. & Denton, G. H. Geochim. cosmochim. Acta 53, 2465–2501 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Broecker, W. S. & Peng, T.-H. Global biogeochem. Cycles 3, 215–239 (1989).

    Article  ADS  Google Scholar 

  5. Imbrie, J., McIntyre, A. & Mix, A. in Climate and Geo-sciences (eds Berger, A., Schneider, S. & Duplessy, J. C.) 121–165 (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  6. Bryan, F. Nature 323, 301–304 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Manabe, S. & Stouffer, R. J. J. Clim. 1, 841–849 (1988).

    Article  ADS  Google Scholar 

  8. Ruddiman, W. F. & McIntyre, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  CAS  Google Scholar 

  9. Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

    Article  ADS  Google Scholar 

  10. Jansen, E. & Veum, T. Nature 343, 612–616 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Mangerud, J. et al. Quat Res. 21, 85–104 (1984).

    Article  CAS  Google Scholar 

  12. Kvamme, T. et al. Nord. geol. Tidsskr. 69, 251–273 (1989).

    Google Scholar 

  13. Duplessy, J. C. et al. Oceanol. Acta (in the press).

  14. Craig, H. & Gordon, L. I. in Proc. Spoleto Conf. Pisa (ed. Tonginiori, E.) (Pisa Univ., 1965).

    Google Scholar 

  15. Jacobs, S. S., Fairbanks, R. G. & Horito, Y. in Oceanography of the Antarctic Continental Shelf 59–85 (American Geophysical Union 1985).

    Google Scholar 

  16. Duplessy, J. C., Labeyrie, L. D. & Blanc, P. L. Long and Short Term Variability of Climate (eds Wanner, H. & Siegenthaler) 83–116 (Springer, New York, 1988).

    Book  Google Scholar 

  17. Vogelsang, E. thesis, Univ. Kiel (1990).

  18. Kroopnick, P. Deep Sea Res. 32, 57–84 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Zahn, R. M., Sarnthein, M. & Erlenkeuser, H. Paleoceanography 2, 543–560 (1987).

    Article  ADS  Google Scholar 

  20. Oppo, D. W. & Fairbanks, R. G. Paleoceanography 4, 333–352 (1989).

    Article  ADS  Google Scholar 

  21. Duplessy, J. C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  22. Keigwin, L. D. & Boyle, E. A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73, 85–106 (1989).

    Article  Google Scholar 

  23. Sarnthein, M. et al. The Last Deglaciation, Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) (Springer, in the press).

  24. Boyle, E. A. Nature 331, 55–56 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Boyle, E. A. EOS 70, 1143 (1989).

    Google Scholar 

  26. Charles, C. D. & Fairbanks, R. G. Nature 355, 416–419 (1992).

    Article  ADS  Google Scholar 

  27. Jones, G. A. & Keigwin, L. D. Nature 336, 56–59 (1988).

    Article  ADS  Google Scholar 

  28. Lehman, S. J. et al. Nature 349, 513–516 (1991).

    Article  ADS  Google Scholar 

  29. Tushingham, M. & Peltier, W. R. J. geophys. Res. (in the press).

  30. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  31. Boyle, E. A. & Keigwin, L. D. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Jansen, E. & Karpuz, N. K. Paleoceanography (submitted).

  33. Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  34. Broecker, W. S. Paleoceanography 5, 459–467 (1990).

    Article  ADS  Google Scholar 

  35. Birchfield, G. E. & Broecker, W. S. Paleoceanography 5, 835–843 (1990).

    Article  ADS  Google Scholar 

  36. Ehrmann, W. H. & Thiede, J. Contrib. Sedimentol. 15, 121–144 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veum, T., Jansen, E., Arnold, M. et al. Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature 356, 783–785 (1992). https://doi.org/10.1038/356783a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356783a0

  • Springer Nature Limited

This article is cited by

Navigation