Skip to main content
Log in

Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN myelinated nerves, segregation of voltage-dependent sodium channels to nodes of Ranvier is crucial for saltatory conduction along axons1–4. As sodium channels associate5 and colocalize with ankyrin at nodes of Ranvier6, one possibility is that sodium channels are recruited and immobilized at axonal sites which are specified by the subaxolemmal cytoskeleton, independent of glial cell contact7–10. Alternatively, segregation of channels at distinct sites along the axon may depend on glial cell contact11–14. To resolve this question, we have examined the distribution of sodium channels, ankyrin and spectrin in myelination-competent co-cultures of sensory neurons and Schwann cells by immunofluores-cence, using sodium channel-, ankyrin- and spectrin-specific antibodies. In the absence of Schwann cells, sodium channels, ankyrin and spectrin are homogeneously distributed on sensory axons. When Schwann cells are introduced into these cultures, the distribution of sodium channels dramatically changes so that channel clusters on axons are abundant, but ankyrin and spectrin remain homogeneously distributed. Addition of latex beads or Schwann cell membranes does not induce channel clustering. Our results suggest that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to organize and maintain channel distribution during differentiation of myelinated axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waxman, S. G. & Ritchie, J. M. Science 228, 1502–1507 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Black, J. A., Kocsis, J. D. & Waxman, S. G. Trends Neurosci. 13, 48–54 (1990).

    Article  CAS  Google Scholar 

  3. Bostock, H. & Sears, T. A. J. Physiol. Lond. 280, 273–301 (1978).

    Article  CAS  Google Scholar 

  4. Rasminsky, M. & Sears, T. A. J. Physiol., Lond. 227, 323–349 (1972).

    Article  CAS  Google Scholar 

  5. Srinivasan, Y., Elmer, L., Davis, J., Bennett, V. & Angelides, K. J. Nature 333, 177–180 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Kordeli, E., Davis, J., Trapp, B. & Bennett, V. J. J Cell Biol. 110, 1341–1352 (1990).

    Article  CAS  Google Scholar 

  7. Ellisman, M. H. J. Neurocytol. 8, 719–748 (1979).

    Article  CAS  Google Scholar 

  8. LeBeau, J. M., Powell, H. C. & Ellisman, M. H. J. Neurocytol. 16, 347–358 (1987).

    Article  CAS  Google Scholar 

  9. Wiley-Livinston, C. A. & Ellisman, M. H. Devl Biol. 79, 334–355 (1980).

    Article  Google Scholar 

  10. Wiley, C. A. & Ellisman, M. H. J. Cell Biol 84, 261–280 (1980).

    Article  CAS  Google Scholar 

  11. Rosenbluth, J. J. Neurocytol. 8, 655–672 (1979).

    Article  CAS  Google Scholar 

  12. Rosenbluth, J. Int. J. devl Neurosci. 6, 3–24 (1988).

    Article  CAS  Google Scholar 

  13. Black, J. A., Waxman, S. G. & Hildebrand, C. J. Neurocytol. 14, 887–909 (1985).

    Article  CAS  Google Scholar 

  14. Bigbee, J. W. & Foster, R. E. Brain Res. 494, 182–186 (1989).

    Article  CAS  Google Scholar 

  15. Eldridge, C. F., Bunge, M. B., Bunge, R. P. & Wood, P. M. J. Cell Biol 105, 1023–1034 (1987).

    Article  CAS  Google Scholar 

  16. Eldridge, C. F., Bunge, M. B. & Bunge, R. P. J. Neurosci. 9, 625–638 (1989).

    Article  CAS  Google Scholar 

  17. Clark, M. B. & Bunge, M. B. Devl Biol. 133, 393–404 (1989).

    Article  CAS  Google Scholar 

  18. Brockes, J. P., Fields, K. P. & Raff, M. C. Brain Res. 165, 105–108 (1979).

    Article  CAS  Google Scholar 

  19. Elmer, L. W., Black, J. A., Waxman, S. G. & Angelides, K. J. Brain Res. 532, 222–231 (1990).

    Article  CAS  Google Scholar 

  20. Reiger, F. Daniloff, J. K., Pincon-Raymond, M., Crosin, K. L., Grumet, M. & Edelman, G. M. J. Cell Biol. 103, 379–391 (1986).

    Article  Google Scholar 

  21. Waxman, S. G. & Foster, R. E. Proc. R. Soc. B209, 441–446 (1980).

    ADS  CAS  Google Scholar 

  22. Black, J. A., Foster, R. E. & Waxman, B. S. J. Neurocytol. 10, 981–993 (1981).

    Article  CAS  Google Scholar 

  23. Smith, K. J., Bostock, H., and Hall, S. M. J. Neurol. Sci. 54, 3–31, 1982.

    Google Scholar 

  24. Black, J. A., Sims, T. J., Waxman, S. G. & Gilmore, S. A. J. Neurocytol. 14, 79–104 (1985).

    Article  CAS  Google Scholar 

  25. Foster, R. E., Whalen, C. C. & Waxman, S. G. Science 210, 661–663 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Rosenbluth, J. & Blakemore, W. Neurosci. Lett. 48, 171–177 (1984).

    Article  CAS  Google Scholar 

  27. Angelides, K. J., Loftus, D., Elmer, L. W. & Elson, E. L. J. Cell Biol. 106, 1911–1925 (1988).

    Article  CAS  Google Scholar 

  28. Black, J. A., Waxman, S. G., Sims, T. J. & Gilmore, S. A. J. Neurocytol. 15, 745–761 (1986).

    Article  CAS  Google Scholar 

  29. Ratner, N., Glaser, L. & Bunge, R. P. J. Cell Biol. 98, 1150–1155 (1984).

    Article  CAS  Google Scholar 

  30. Ranscht, B., Wood, P. M. & Bunge, R. P. J. Neurosci. 7, 2936–2947 (1987).

    Article  CAS  Google Scholar 

  31. Owens, G. & Bunge, R. P. Glia 2, 119–128 (1989).

    Article  CAS  Google Scholar 

  32. Wood, P. M., Schachner, M. & Bunge, R. P. J. Neurosci. 10, 3635–3645 (1990).

    Article  CAS  Google Scholar 

  33. Froehner, S. C. J. Cell Biol. 113, 1133–1144 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joe, Eh., Angelides, K. Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact. Nature 356, 333–335 (1992). https://doi.org/10.1038/356333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356333a0

  • Springer Nature Limited

This article is cited by

Navigation