Skip to main content
Log in

Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AGONIST-BOUND receptors activate heterotrimeric (αβγ) G proteins by catalysing replacement by GTP of GDP bound to the a subunit, resulting in dissociation of α-GTP from the βγ subunits. In most cases, α-GTP carries the signal to effectors, as in hormonal stimulation1–4 and inhibition5,6of adenylyl cyclase by αs and αi, respectively. By contrast, genetic evidence in yeast7 and studies in mammalian cells8–10 suggest that βγ subunits of G proteins may also regulate effector pathways. Indeed, of the four recombinant mammalian adenylyl cyclases available for study11–14, two, adenylyl cyclases II and IV, are stimulated by βγ. This effect of βγ requires costimulation by αs-GTP14,15. This conditional pattern of effector responsiveness led to the prediction15 that receptors coupled to many G proteins will mediate elevation of cellular cyclic AMP, provided that Gs is also active. We now confirm this prediction. Coexpression of mutationally active αs with adenylyl cyclase II converted agonists that act through 'inhibitory' receptors (coupled to Gi) into stimulators of cAMP synthesis. Experiments using pertussis toxin and a putative scavenger ofβγ , the α subunit of transducin, suggest that βγ subunits of the Gi proteins mediated this stimulation. These findings assign a new signalling function to βγ subunits of Gi proteins, the conditional stimulation of cAMP synthesis by adenylyl cyclase II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birnbaumer, L. A. Rev. Pharmac. Tox. 30, 675–705 (1990).

    Article  CAS  Google Scholar 

  2. Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M. & Satoh, T. A. Rev. Biochem. 60, 349–400 (1991).

    Article  CAS  Google Scholar 

  3. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Freissmuth, M., Casey, P. J. & Gilman, A. G. FASEB J. 3, 2125–2131 (1989).

    Article  CAS  Google Scholar 

  5. Wong, Y. H. et al. Nature 351, 63–65 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Wong, Y. H., Conklin, B. R. & Bourne, H. R. Science 255, 339–342 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Whiteway, M., Hougan, L., Dignard, D., MacKay, V. & Thomas, D. Y. Cold Spring Harb. Symp. quant. Biol. 53, 585–590 (1988).

    Article  CAS  Google Scholar 

  8. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. Nature 325, 321–326 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Jelsema, C. L. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 84, 3623–3627 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Kim, D. et al. Nature 337, 557–560 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Krupinski, J. et al. Science 244, 1558–1564 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Bakalyar, H. A. & Reed, R. R. Science 250, 1403–1406 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Feinstein, P. G. et al. Proc. natn. Acad. Sci. U.S.A. 88, 10173–10177 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Gao, B. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 88, 10178–10182 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Tang, W.-J. & Gilman, A. G. Science 254, 1500–1503 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Cotecchia, S. et al. J. biol. Chem. 265, 63–69 (1990).

    CAS  PubMed  Google Scholar 

  17. Fraser, C. M., Arakawa, S., McCombie, W. R. & Venter, J. C. J. biol. Chem. 264, 11754–11761 (1989).

    CAS  PubMed  Google Scholar 

  18. Grandy, D. K. et al. Proc. natn. Acad. Sci. U.S.A. 86, 9762–9766 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Masters, S. B. et al. J. biol. Chem. 264, 15467–15474 (1989).

    CAS  Google Scholar 

  20. Medynski, D. C. et al. Proc. natn Acad. Sci U.S.A. 82, 4311–4315 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Sattin, A., Rall, T. W. & Zanella, J. J. Pharmac. exp. Ther. 192, 22–32 (1975).

    CAS  Google Scholar 

  22. Daly, J. W. et al. J. Pharmac. exp. Ther. 212, 383–389 (1980).

    Google Scholar 

  23. Karbon, E. W. & Enna, S. J. Molec. Pharmac. 27, 53–59 (1985).

    CAS  Google Scholar 

  24. Hill, D. R. Br. J. Pharmac. 84, 249–257 (1985).

    CAS  Google Scholar 

  25. Tang, W.-J., Krupinski, J. & Gilman, A. G. J. biol. Chem. 266, 8595–8603 (1991).

    CAS  PubMed  Google Scholar 

  26. McFarland, K. C. et al. Science 245, 494–499 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Guyer, C. A., et al. J. biol. Chem. 265, 17307–17317 (1990).

    CAS  Google Scholar 

  28. Salomon, Y., Londos, C. & Rodbell, M. Ana Biochem. 58, 541–548 (1974).

    Article  CAS  Google Scholar 

  29. Mahan, L. C. et al. Molec. Pharmac. 40, 1–7 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federman, A., Conklin, B., Schrader, K. et al. Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356, 159–161 (1992). https://doi.org/10.1038/356159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356159a0

  • Springer Nature Limited

This article is cited by

Navigation