Skip to main content

Advertisement

Log in

Assessment of protein models with three-dimensional profiles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AS methods for determining protein three-dimensional (3D) structure develop, a continuing problem is how to verify that the final protein model is correct. The revision of several protein models to correct errors1–6 has prompted the development of new criteria for judging the validity of X-ray7–9 and NMR10,11 structures, as well as the formation of energetic12–14 and empirical methods15,16 to evaluate the correctness of protein models. The challenge is to distinguish between a mistraced or wrongly folded model, and one that is basically correct, but not adequately refined. We show that an effective test of the accuracy of a 3D protein model is a comparison of the model to its own amino-acid sequence, using a 3D profile16, computed from the atomic coordinates of the structure 3D profiles of correct protein structures match their own sequences with high scores. In contrast, 3D profiles for protein models known to be wrong score poorly. An incorrectly modelled segment in an otherwise correct structure can be identified by examining the profile score in a moving-window scan. The accuracy of a protein model can be assessed by its 3D profile, regardless of whether the model has been derived by X-ray, NMR or computational procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight, S., Andersson, I. & Brändén, C. I. Science 244, 702–705 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Stout, G. H., Turley, S., Sieker, L. C. & Jensen, L. H. Proc. natn. Acad. Sci. U.S.A. 85, 1020–1022 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Lebioda, L., Stec, B. & Brewer, J. M. J. biol. Chem. 264, 3685–3693 (1989).

    CAS  PubMed  Google Scholar 

  4. Wlodawer, A. et al. Science 245, 616–621 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Tong, L., Milburn, M. V., de Vos, A. M. & Kim, S. H. Science 245, 244 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Kim, Y., Grable, J. C., Love, R., Greene, P. J. & Rosenberg, J. Science 249, 1307–1309 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  8. Bränden, C.-I. & Jones, T. A. Nature 343, 687–689 (1990).

    Article  ADS  Google Scholar 

  9. Brünger, A. T. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  10. Gonzalez, J. A., Rullmann, C. Bonvin, A. M. J. J., Boelens, R. & Kaptein, R. J. magn. Reson. 91, 659–664 (1991).

    ADS  CAS  Google Scholar 

  11. Nilges, M., Habazettl, J., Brünger, A. T. & Holak, T. A. J. molec. Biol. 219, 499–510 (1991).

    Article  CAS  Google Scholar 

  12. Novotny, J., Bruccoleri, R. & Karplus, M. J. molec. Biol. 177, 787–818 (1984).

    Article  CAS  Google Scholar 

  13. Eisenberg, D. & McLachlan, A. D. Nature 319, 199–203 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Novotny, J., Rashin, A. A. & Bruccoleri, R. Proteins struct. funct. Genet. 4, 19–30 (1988).

    Article  CAS  Google Scholar 

  15. Baumann, G., Frömmel, O. & Sander, C. Protein Eng. 2, 329–334 (1989).

    Article  CAS  Google Scholar 

  16. Hendlich, M. et al. J. molec. Biol. 216, 167–180 (1990).

    Article  CAS  Google Scholar 

  17. Bowie, J. U., Lüthy, R. & Eisenberg, D. Science 253, 164–170 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Weber, I. T., Steitz, T. A., Bubis, J. & Taylor, S. S. Biochemistry 26, 343–351 (1987).

    Article  CAS  Google Scholar 

  19. Blundell, T. L., Bedarkar, S. & Humbel, R. E. FASEB J. 42, 2592 (1983).

    CAS  Google Scholar 

  20. Peitsch, M. C. & Boguski, M. S. New Biol. 2, 197–206 (1990).

    CAS  PubMed  Google Scholar 

  21. Kuhn, L. A. et al. Proc. natn. Acad. Sci. U.S.A. 87, 8506–8510 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Raghunathan, G., Seetharamulu, P., Brooks, B. R. & Guy, H. R. Proteins struct. funct. Genet. 8, 213–225 (1990).

    Article  CAS  Google Scholar 

  23. Chapman, M. S. et al. Science 241, 71–74 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Gosh, D. J. molec. Biol. 158, 73–109 (1982).

    Article  Google Scholar 

  25. de Vos, A. M. et al. Science 239, 888–893 (1988).

    Article  ADS  CAS  Google Scholar 

  26. McClarin, C. et al. Science 234, 1526 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Navia, M. et al. Nature 347, 615–620 (1989).

    Article  ADS  Google Scholar 

  28. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  29. Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. Acta crystallogr. B38, 784–792 (1978).

    Google Scholar 

  30. Hill, C. P., Anderson, D. H., Wesson, L., DeGrado, W. F. & Eisenberg, D. Science 249, 543–546 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüthy, R., Bowie, J. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992). https://doi.org/10.1038/356083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356083a0

  • Springer Nature Limited

This article is cited by

Navigation