Skip to main content
Log in

New yeast actin-like gene required late in the cell cycle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ACTIN, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis1,2. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene3–5, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface6–9. We report here the characterization of ACT29 a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure9,10 of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from 5. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollard, T. D. & Cooper, J. A. A. Rev. Biochem. 555, 987–1035 (1986).

    Article  Google Scholar 

  2. Drubin, D. G. Cell Motil. Cytoskel 15, 7–11 (1990).

    Article  CAS  Google Scholar 

  3. Gallwitz, D. & Sures, I. Proc. natn. Acad. Sci. U.S.A. 77, 2546–2550 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Ng, R. & Abelson, J. Proc. natn. Acad. Sci. U.S.A. 77, 3912–3916 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Shortle, D., Haber, J. E. & Botstein, D. Science 217, 371–373 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kilmartin, J. V. & Adams, A. E. M. J. Cell Biol. 98, 922–933 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Adams, A. E. M. & Pringle, J. R. J. Cell Biol. 98, 934–945 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Novick, P. & Botstein, D. Cell 40, 405–416 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Nature 347, 37–44 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Nature 347, 44–48 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Snyder, M., Elledge, S., Sweetser, D., Young, R. A. & Davis, R. W. Meth. Enzym. 159, 107–128 (1987).

    Article  Google Scholar 

  12. Legrain, P. et al. Molec. Gen. Genet. 225, 199–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Mortimer, R. K. & Schild, D. Microbiol. Rev. 49, 181–212 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Greer, C. & Schekman, R. Molec. cell. Biol. 2, 1270–1278 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huffaker, T. C., Hoyt, M. A. & Botstein, D. A Rev. Genet. 21, 259–284 (1987).

    Article  CAS  Google Scholar 

  16. Adams, M. D. et al. Science 252, 1651–1656 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Elzinga, M., Collins, J. H., Kuehl, W. M. & Adelstein, R. S. Proc. natn. Acad. Sci. USA. 70, 2687–2691 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Haarer, B. K. & Pringle, J. R. Molec. cell. Biol. 7, 3678–3687 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solomon, L. R. & Rubenstein, P. A. J. biol. Chem. 262, 11382–11388 (1988).

    Google Scholar 

  20. Aktories, K. & Wegner, A. J. Cell Biol. 109, 1385–1387 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Vandekerckhove, J., Deboben, A., Nassal, M. & Wieland, T. EMBO J. 4, 2815–2818 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno, S. & Nurse, P. Cell 61, 549–551 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Surana, U. et al. Cell 65, 145–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Ghiara, J. B. et al. Cell 65, 163–174 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Langford, C. J. & Gallwitz, D. Cell 33, 519–527 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Chasman, D. I. et al. Genes Dev. 4, 503–514 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Devereux, J., Haeberli, P. & Smithies, P. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rothstein, R. J. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  31. McKnight, S. L. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwob, E., Martin, R. New yeast actin-like gene required late in the cell cycle. Nature 355, 179–182 (1992). https://doi.org/10.1038/355179a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355179a0

  • Springer Nature Limited

This article is cited by

Navigation