Skip to main content

Advertisement

Log in

Disequilibrium carbon and oxygen isotope variations in natural calcite

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OXYGEN isotope fractionation in the calcite–water system is widely used to investigate the temperature, fluid composition and reaction rate of calcite precipitation, under the assumption that equilibrium is maintained during precipitation. Here I present analyses of coarsely crystalline, inorganic calcite displaying combined growth and sector zoning, which show this assumption to be untrue. Variations in the isotope composition of successive growth zones can be interpreted as due to changing conditions of precipitation, with equilibrium being maintained throughout. But variations across different sectors of the same synchronous growth surface (∼2‰ for δ13C and ∼0.9‰ for δ18O) record disequilibrium in the same crystal. This type of disequilibrium may be common, as calcite precipitates in a great variety of crystal form combinations; moreover, many noncarbonate minerals also grow as crystals with two or more crystallographic forms. Indeed, Boyd et al.1 reported fractionation of nitrogen isotopes between cubic and octahedral sectors of a synthetic diamond, but I believe that crystallographi-cally controlled isotope fractionation of stoichiometric ions has not hitherto been recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, S. R., Pillinger, C. T., Milledge, H.J., Mendelssohn, M. J. & Seal, M. Nature 331, 604–607 (1988).

    Article  ADS  CAS  Google Scholar 

  2. McCrea, J. M. J. chem. Phys. 18, 849–857 (1950).

    Article  ADS  CAS  Google Scholar 

  3. Bottinga, Y. J. chem. Phys. 72, 800–808 (1968).

    Article  CAS  Google Scholar 

  4. Epstein, S. et al. Geol. Soc. Am. Bull. 64, 1315–1326 (1953).

    Article  ADS  CAS  Google Scholar 

  5. Clayton, R. N. J. chem. Phys. 34, 724–726 (1961).

    Article  ADS  CAS  Google Scholar 

  6. Tarutani, T. et al. Geochim. cosmochim. Acta. 33, 987–996 (1969).

    Article  ADS  CAS  Google Scholar 

  7. O'Neil, J. R. et al. J. chem. Phys. 51, 5547–5558 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Land, L. S. Handbook of Environmental Isotope Geochemistry 3 (eds Fritz, P. & Fontes, J. Ch.) 191–217 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  9. Turner, J. V. Geochim. cosmochim. Acta. 46, 1183–1191 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Prezbindowski, D. R. Carbonate Cements Spec. Publ. 36 (eds Schneiderman, N. & Harris, P. M.) 241–264 (SEPM, Tulsa, 1985).

    Book  Google Scholar 

  11. Lawrence, J. R. et al. Init. Rep. Deep-Sea Drilling Proj. 507–512 (US Government Printing Office, Washington DC, 1976).

    Google Scholar 

  12. Banner, J. L. & Hanson, G. N. Geochim. cosmochim. Acta. 54, 3123–3137 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Dickson, J. A. D. et al. Geology 18, 809–811 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Reeder, R. J. & Grams, J. C. Geochim. cosmochim. Acta. 51, 187–194 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Searl, A. Mineralog. Mag. 54, 501–507 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickson, J. Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353, 842–844 (1991). https://doi.org/10.1038/353842a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353842a0

  • Springer Nature Limited

This article is cited by

Navigation