We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Log in

Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MEMBRANE depolarization causes many kinds of ion channels to open, a process termed activation1. For both Na+ channels2–4 and Ca2+ channels5,6, kinetic analysis of current has suggested that during activation the channel undergoes several conformational changes before reaching the open state. Structurally, these channels share a common motif7: the central element is a large polypeptide with four repeating units of homology (repeats I-IV), each containing a voltage-sensing region, the S4 segment8–11. This suggests that the distinct conformational transitions inferred from kinetic analysis may be equated with conformational changes of the individual structural repeats8. To investigate the molecular basis of channel activation, we constructed complementary DNAs encoding chimaeric Ca2+ channels in which one or more of the four repeats of the skeletal muscle dihydropyridine receptor are replaced by the corresponding repeats derived from the cardiac dihydropyridine receptor. We report here that repeat I determines whether the chimaeric Ca2+ channel shows slow (skeletal muscle-like) 12 or rapid (cardiac-like) 13 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 1984).

    Google Scholar 

  2. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  3. Armstrong, C. M. Physiol. Rev. 61, 644–683 (1981).

    Article  CAS  Google Scholar 

  4. Keynes, R. D., Greeff, N. G. & Forster, I. C. Proc. R. Soc. Lond. B 240, 411–423 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Kostyuk, P. G., Krishtal, O. A. & Pidoplichko, V. I. J. Physiol., Lond. 310, 403–421 (1981).

    Article  CAS  Google Scholar 

  6. Sanchez, J. A. & Stefani, E. J. Physiol., Lond. 337, 1–17 (1983).

    Article  CAS  Google Scholar 

  7. Numa, S. Harvey Lect. 83, 121–165 (1989).

    Google Scholar 

  8. Noda, M. et al. Nature 312, 121–127 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Noda, M. et al. Nature 320, 188–192 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Stühmer, W. et al. Nature 339, 597–603 (1989).

    Article  ADS  Google Scholar 

  12. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 344, 451–453 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T. & Numa, S. Nature 346, 567–569 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Gluecksohn-Waelsch, S. Science 142, 1269–1276 (1963).

    Article  ADS  CAS  Google Scholar 

  16. Zagotta, W. N. & Aldrich, R. W. J. gen. Physiol. 95, 29–60 (1990).

    Article  CAS  Google Scholar 

  17. Mikami, A. et al. Nature 340, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Noda, M., Suzuki, H., Numa, S. & Stühmer, W. FEBS Lett. 259, 213–216 (1989).

    Article  CAS  Google Scholar 

  19. MacKinnon, R. & Miller, C. Science 245, 1382–1385 (1989).

    Article  ADS  CAS  Google Scholar 

  20. MacKinnon, R. & Yellen, G. Science 250, 276–279 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Yool, A. J. & Schwarz, T. L. Nature 349, 700–704 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Hartmann, H. A. et al. Science 251, 942–944 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Guy, H. R. & Conti, F. Trends Neurosci. 13, 201–206 (1990).

    Article  CAS  Google Scholar 

  25. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Adams, B. A., Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 346, 569–572 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, T., Adams, B., Numa, S. et al. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352, 800–803 (1991). https://doi.org/10.1038/352800a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352800a0

  • Springer Nature Limited

This article is cited by

Navigation