Skip to main content

Advertisement

Log in

Reconstruction of Caribbean climate change over the past 10,500 years

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SEDIMENT cores from low-latitude lakes provide some of the best records of tropical climate change since the late Pleistocene. Here we report a high-resolution reconstruction of Caribbean climate based on 18O/16O ratios in ostracod shells from Lake Miragoane, Haiti. Our results show that the climate was dry and the lake level low during the latter part of the Younger Dryas chronozone (10.5–10 kyr BP), but that water level in the lake rose at the end of the last deglaciation (∼ 10–7 kyr BP), reflecting the wetter conditions of the early Holocene which persisted for nearly 4,000 years. Lake level declined at ∼3.2 kyr BP with the onset of a drier climate which generally prevailed throughout the late Holocene. These long-term changes in Caribbean climate are generally similar to those found for Africa over the same period, and can be largely explained by orbitally induced (Milankovitch) variations in seasonal insolation which modified the intensity of the annual cycle. Superimposed on the orbitally forced climate trends are more abrupt climate events that result from complex, nonlinear interactions in the ocean—atmosphere system. The interpretation of Antillean biogeography and the development of Caribbean and Mesoamerican culture must be considered in the context of such shifts in climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, M. & Binford, M. W. J. Paleolimnol. 1, 85–97 (1988).

    Article  ADS  Google Scholar 

  2. Gasse, F., Téhet, R., Durand, A., Gibert, E. & Fontes, J. C. Nature 346, 141–146 (1990).

    Article  ADS  Google Scholar 

  3. Fontes, J. C. & Gonfiantini, R. Earth planet. Sci. Lett. 3, 258–266 (1967).

    Article  ADS  CAS  Google Scholar 

  4. Higuera-Gundy, A. thesis, Univ. of Florida (1991).

  5. Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

    Article  ADS  Google Scholar 

  6. Street-Perrott, F. A. & Perrott, R. A. Nature 343, 607–612 (1990).

    Article  ADS  Google Scholar 

  7. Bradbury, J. P. et al. Science 214, 1299–1305 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Deevey, E. S., Brenner, M. & Binford, M. W. Hydrobiologia 103, 211–216 (1983).

    Article  CAS  Google Scholar 

  9. Gasse, F., LeDee, V., Massault, M. & Fontes, J. Nature 342, 57–65 (1989).

    Article  ADS  Google Scholar 

  10. Leyden, B. W. Proc. natn. Acad. Sci. 81, 4856–4859 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Leyden, B. W. Ecology 66, 1279–1295 (1985).

    Article  Google Scholar 

  12. Piperno, D. R., Bush, M. B. & Colinvaux, P. A. Quat. Res. 33, 108–116 (1990).

    Article  Google Scholar 

  13. Street, F. A. & Grove, A. T. Nature 261, 385–390 (1976).

    Article  ADS  Google Scholar 

  14. Street, F. A. & Grove, A. T. Quat. Res. 12, 83–118 (1979).

    Article  Google Scholar 

  15. Watts, W. A. Geology 3, 344–346 (1975).

    Article  ADS  Google Scholar 

  16. Duplessy, J.-C. Delibrias, G., Turon, J. L., Pujol, C. & Duprat, J. Palaeogeogr. Palaeoclim. Palaeoecol. 35, 121–144 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Duplessy, J.-C. et al. Nature 320, 350–352 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Jansen, E. & Veum, T. Nature 343, 612–616 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Leyden, B. W. Quat. Res. 81, 407–414 (1987).

    Article  Google Scholar 

  20. Street-Perrott, F. A. & Harrison, S. P. in Paleoclimate Analysis and Modeling (ed. Hecht, A. D.) 291–340 (Wiley, New York, 1985).

    Google Scholar 

  21. Kutzbach, J. E. & Street-Perrott, F. A. Nature 317, 130–134 (1985).

    Article  ADS  Google Scholar 

  22. Hastenrath, S. J. atm. Sci. 33, 202–215 (1976).

    Article  ADS  Google Scholar 

  23. Hastenrath, S. Mon. Weath. Rev. 112, 1097–1107 (1984).

    Article  ADS  Google Scholar 

  24. Manabe, S. & Hahn, D. G. J. geophys. Res. 82, 3889–3911 (1977).

    Article  ADS  Google Scholar 

  25. Gates, W. L. Science 191, 1138–1144 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Kutzbach, J. E. Science 214, 59–61 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Kutzbach, J. E. & Guetter, P. J. in Milankovitch and Climate, Understanding the Response to Astronomical Forcing, Part 2 (eds Berger, A. L., Imbrie. J., Hays, J., Kukla. G. & Saltzman. B.) 801–820 (Reidel, Dordrecht/Hingham, 1984).

    Google Scholar 

  28. Morgan, G. S. & Woods, C. A. Biol. J. Linnaean Soc. 28, 167–203 (1986).

    Article  Google Scholar 

  29. Gagnon, A. R. & Jones, G. A. Radiocarbon 33, 198 (1991).

    Google Scholar 

  30. Deevey, E. S. & Stuiver, M. Limnol. Oceanogr. 9, 1–11 (1964).

    Article  ADS  CAS  Google Scholar 

  31. Berger, A. Inst. d'Astr. Géophys. G. Lemaitre Contrib. 37 (Univ. Catholique. Louvain-la-Neuve. Belgium, 1978).

    Google Scholar 

  32. Klein, J., Lermann, J. C., Damon, P. E. & Ralph, E. K. Radiocarbon 24, 103–150 (1982).

    Article  Google Scholar 

  33. Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Nature 345, 405–410 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodell, D., Curtis, J., Jones, G. et al. Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352, 790–793 (1991). https://doi.org/10.1038/352790a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352790a0

  • Springer Nature Limited

This article is cited by

Navigation