Skip to main content
Log in

New antiviral strategy using capsid-nuclease fusion proteins

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OVEREXPRESSION of dominant-negative mutants of various viral proteins can result in 'intracellular immunization' (refs 1, 2). Here we describe a new approach to interfering with viral replication in which a nuclease is fused to a capsid component so that the nuclease is encapsidated inside the virion where it can inactivate viral nucleic acid. We used Tyl, a yeast retrotransposon whose transposition closely parallels retroviral replication mechanisms and serves as an easily manipulated model for the retroviral infection process3. We constructed fusion genes consisting of the region encoding the N-terminal portion of the TYA/TYB open reading frames of retrotransposon Tyl and either of two different nuclease genes. Tyl-nuclease fusion proteins are targeted to Tyl virus-like particles, and are active in degrading nucleic acids. A Tyl-barnase fusion protein causes 98–99% reduction in the efficiency of Tyl transposition in vivo, presumably by degrading encapsidated Tyl RNA. This strategy, referred to as capsid- targeted viral inactivation, may be useful for interfering with the replication of retroviruses and other viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herskowitz, I. Nature 329, 219–222 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Baltimore, D. Nature 335, 395–396 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Boeke, J. D. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 335–374 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  4. Atkins, J. F., Weiss, R. B. & Gesteland, R. F. Cell 62, 413–423 (1990).

    Article  CAS  Google Scholar 

  5. Yoshinaka, Y., Katoh, I., Copeland, T. D. & Oroszlan, S. Proc. natn. Acad. Sci. U.S.A. 82, 1618–1622 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Yoshioka, K. et al. EMBO J. 9, 535–541 (1990).

    Article  CAS  Google Scholar 

  7. Brierley, C. & Flavell, A. J. Nucleic Acids Res. 18, 2947–2951 (1990).

    Article  CAS  Google Scholar 

  8. Jones, T. A., Blaug, G., Hansen, M. & Barklis, E. J. Virol. 64, 2265–2279 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weldon, R. A., Erdie, C. R., Oliver, M. G. & Wills, J. W. J. Virol. 64, 4169–4179 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Adams, S. E., Dawson, K. M., Gull, K., Kingsman, S. M. & Kingsman, A. J. Nature 329, 68–70 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Hartley, R. W. Trends biochem. Sci. 14, 450–454 (1989).

    Article  CAS  Google Scholar 

  12. Mariani, C., deBeuckeleer, M., Truettner, J., Leemans, J. & Goldberg, R. B. Nature 347, 737–741 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Tucker, P. W., Hazen, E. E. & Cotton, F. A. Molec. cell. Biochem. 22, 67–77 (1978).

    Article  CAS  Google Scholar 

  14. Weber, D. J., Serpersu, E. H., Shortle, D. & Mildvan, A. S. Biochemistry 29, 8632–8642 (1990).

    Article  CAS  Google Scholar 

  15. Mossakowska, D. E., Nyberg, K. & Fersht, A. R. Biochemistry 28, 3843–3850 (1989).

    Article  CAS  Google Scholar 

  16. Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Cell 40, 491–500 (1985).

    Article  CAS  Google Scholar 

  17. Garfinkel, D. J., Boeke, J. D. & Fink, G. R. Cell 42, 507–517 (1985).

    Article  CAS  Google Scholar 

  18. Mellor, J. et al. Nature 318, 583–586 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Müller, F., Brühl, K. H., Freidel, K., Kowallik, K. V. & Ciriacy, M. Molec. Gen. Genet. 207, 421–429 (1987).

    Article  Google Scholar 

  20. Adams, S. E. et al. Cell 49, 111–119 (1987).

    Article  CAS  Google Scholar 

  21. Youngren, S. D., Boeke, J. D., Sanders, N. J. & Garfinkel, D. J. Molec. cell. biol. 8, 1421–1431 (1988).

    Article  CAS  Google Scholar 

  22. Eichinger, D. J. & Boeke, J. D. Cell 54, 955–966 (1988).

    Article  CAS  Google Scholar 

  23. Eichinger, D. J. & Boeke, J. D. Genes Dev. 4, 324–330 (1990).

    Article  CAS  Google Scholar 

  24. Boeke, J. D., Xu, H. & Fink, G. R. Science 239, 280–282 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Cuatrecasas, P., Fuchs, S. & Anfinsen, C. B. J. Biol. Chem. 242, 1541–1547 (1967).

    CAS  PubMed  Google Scholar 

  26. Sikorski, R. S. & Hieter, P. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boeke, J. D., Eichinger, D. J., Castrillon, D. & Fink, G. R. Molec. cell. Biol. 8, 1432–1442 (1988).

    Article  CAS  Google Scholar 

  28. Hartley, R. W. J. molec. Biol. 202, 913–915 (1988).

    Article  CAS  Google Scholar 

  29. Rose, M. D. & Fink, G. R. Cell 48, 1047–1060 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsoulis, G., Boeke, J. New antiviral strategy using capsid-nuclease fusion proteins. Nature 352, 632–635 (1991). https://doi.org/10.1038/352632a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352632a0

  • Springer Nature Limited

This article is cited by

Navigation