Skip to main content
Log in

Distribution of dissolved iron in sediment pore waters at submillimetre resolution

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MUCH effort has been directed at measuring concentration gradients at the sediment/water interface of aquatic systems, where the biogeochemical cycling of natural and pollutant species is particularly active1. Precise measurements of oxygen gradients using microelectrodes2 and estimates from independently determined fluxes3 suggest that concentration gradients in this region often extend only to depths of ˜1 mm, much less than the resolution (˜1 centimetre) of conventional techniques4–7. We have developed a new method for measuring pore-water composition in which diffusive equilibrium is established rapidly (within minutes) in a thin film of gel inserted in the sediment. On removal, the dissolved components are fixed, allowing chemical measurements to be made at high spatial resolution (<1 mm) on a stable solid phase. Using MeV-proton-induced X-ray emission (PIXE) to analyse the dried gel, we have measured iron concentrations in lacustrine pore waters at submillimetre resolution, revealing steep concentration gradients and sub-surface maxima consistent with a hypothesis of localized, reductive dissolution of fresh material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santschi, P., Hohener, P., Benoit, G. & Buchholtz-ten Brink, M. Mat. Chem. 30, 269–315 (1990).

    CAS  Google Scholar 

  2. Gunderson, J. K. & Jorgensen, B. B. Nature 345, 604–607 (1990).

    Article  ADS  Google Scholar 

  3. Davison, W. in Chemical Processes in Lakes (ed. Stumm, W.) (Wiley, New York, 1985).

    Google Scholar 

  4. Davison, W., Woof, C. & Turner, D. R. Nature 295, 582–583 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Carignan, R., Rapin, F. & Tessier, A. Geochim. cosmochim. Acta 49, 2493–2499 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Mayer, L. M. Limnol. Oceanogr. 21, 909–912 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Hesslein, R. H. Limnol. Oceanogr. 21, 912–914 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Hamilton-Taylor, J. & Morris, E. B. Arch. Hydrobiol. 72, 135–165 (1985).

    CAS  Google Scholar 

  9. Belzile, N., DeVitre, R. R. & Tessier, A. Nature 340, 376–377 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Millero, F. J., Sotolongo, S. & Izaguirre, M. Geochim. cosmochim. Acta 51, 793–801 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Johanson, S. A. E. & Campbell, J. L. PIXE—A Novel Technique for Elemental Analysis (Wiley, New York, 1988).

    Google Scholar 

  13. Watt, F. & Grime, G. W. (eds) Principles and Applications of High Energy Microbeams (Hilger, Bristol. 1987).

  14. Grime, G. W., Dawson, M., Marsh, M., McArthur, I. C. & Watt, F. Nucl. Instrum. Meth. B54, 52–63 (1991).

    Article  Google Scholar 

  15. Mortimer, C. H. Limnol. Oceanogr. 16, 387–404 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Heaney, S. I., Smyly, W. J. P. & Tailing, J. F. Int. Rev. ges. Hydrobiol. 71, 441–494 (1986).

    Article  CAS  Google Scholar 

  17. Ramsbottom, A. E. Sclent Publ. Freshwater Biol. Assoc. 33, 10–13 (1976).

    Google Scholar 

  18. Davison, W., Woof, C. & Rigg, E. Limnol. Oceanogr. 27, 987–1003 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Davison, W. Nature 290, 241–243 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, W., Grime, G., Morgan, J. et al. Distribution of dissolved iron in sediment pore waters at submillimetre resolution. Nature 352, 323–325 (1991). https://doi.org/10.1038/352323a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352323a0

  • Springer Nature Limited

This article is cited by

Navigation