Skip to main content
Log in

Extraction of high-resolution carbonate data for palaeoclimate reconstruction

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TEMPORAL variations in the calcium carbonate content of deepsea sediments provide direct stratigraphic as well as important palaeoenvironmental information relating to the global carbon cycle. Here I present an algorithm that allows carbonate content and porosity to be accurately predicted from saturated bulk density in equatorial pelagic carbonates. Applying the algorithm to continuous laboratory measurements of density made on DSDP and OOP cores yields a nearly continuous carbonate record for the upper ~200 m of the sediment section. Long, ultra-high-resolution carbonate curves of this type should yield new insight into the evolution of the carbon chemistry of the oceans, as well as the role of external (Milankovitch) forcing in the development of the carbonate system. The algorithm can also be applied to quantitative, high-resolution seismic data, thereby enabling detailed carbonate records to be extracted from remotely derived geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hays, J. D., Saito, T., Opdyke, N. D. & Burckle, L. H. Geol. Soc. Am. Bull. 80, 1481–1514 (1969).

    Article  ADS  Google Scholar 

  2. Arrhenius, G. Rep. Swedish Deep-Sea Exped. 1947–1948 5, 1–228 (1952).

    Google Scholar 

  3. Berger, W. H. J. foram. Res. 3, 187–195 (1973).

    Article  ADS  Google Scholar 

  4. Adelseck, C. G. & Anderson, T. F. Geology 6, 388–391 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Arrhenius, G. Paleogeogr. Paleoclimatol. Paleoecol, 67, 119–146 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity AGU Geophys. Mag Monogr. Ser. 29 (eds Hansen, J. & Takahashi, T.) 337–351 (Washington DC, 1984).

    Book  Google Scholar 

  7. Pedersen, T. F. Geology 11, 16–19 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Berger, W. H. & Spitzy, A. Paleoceanography, 3, 401–411 (1988).

    Article  ADS  Google Scholar 

  9. Jones, G. A. & Kaiteris, P. J. sedim. Petrol, 53, 655–660 (1983).

    Article  CAS  Google Scholar 

  10. Chaney, R. C., Slonim, S. M. & Slonim, S. S. in Geotechnical Properties Behavior and Performance of Calcareous Soils, ASTM STP 777 (eds Demars, K. R. & Chaney, R. C.) 3–15 (Am. Soc. Testing and Materials. Philadelphia, 1982).

    Book  Google Scholar 

  11. Mayer, L. A. J. sedim, Petrol. 49, 819–836 (1979).

    Google Scholar 

  12. Hamilton, E. L. J. sedim. Petrol. 46, 280–300 (1976).

    Google Scholar 

  13. Wilkens, R. H. & Handyside, T. in Initial Rep. DSDP 85 (eds Mayer, LA. & Theyer, F.) 839–848 (US Govt Printing Office, Washington, DC, 1985).

    Google Scholar 

  14. Herbert, T. D. EOS 71, 1378 (1990).

    Google Scholar 

  15. Hagelberg, T. K., Pisias, N. & Elgar, S. EOS 71, 1378 (1990).

    Google Scholar 

  16. Pisias, N. G. & Moore, T. C. Earth planet. Sci. Lett 52, 450–458 (1981).

    Article  ADS  Google Scholar 

  17. Moore, T. C., Pisias, N. G. & Dunn, D. Marine Geol. 46, 217–233 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Prell, W. in Initial Rep. DSDP 68 (eds Prell, W. L. & Gardiner, J. V.) 455–464 (US Govt Printing Office, Washington, DC, 1982).

    Google Scholar 

  19. Shackleton, N. J., Imbrie, J. & Pisias, N. G. Phil. Trans. R. Soc. B318, 679–688 (1988).

    Article  CAS  Google Scholar 

  20. Ruddiman, W. F. & Raymo, M. E. Phil. Trans. R. Soc. B318, 411–430 (1988).

    Article  CAS  Google Scholar 

  21. Berger, A. Quat Intl 2, 1–14 (1989).

    Article  ADS  Google Scholar 

  22. Shackleton, N. J. & Hall, M. A. in Proc. Ocean Drill, Program 111 (eds Becker, K & Sakai, H.) (US Govt Printing Office, Washington DC, in the press).

  23. Oldenburg, D. W., Scheuer, T. & Levy, S. Geophysics 48, 1318–1337 (1983).

    Article  ADS  Google Scholar 

  24. Schock, S. G., LeBlanc, L. R., & Mayer, L. A. Geophysics 54, 445–450 (1989).

    Article  ADS  Google Scholar 

  25. Chuey, J. M., Rea, D. K. & Pisias, N. G. Quat. Res. 28, 323–339 (1987).

    Article  CAS  Google Scholar 

  26. Pisias, N. G. & Rea, D. K. Paleoceanography 3, 21–37 (1988).

    Article  ADS  Google Scholar 

  27. Weinreich, N. & Theyer, F. Initial Rept. DSDP 85 (eds Mayer, L.A. & Theyer, F.) 849–904 (US Govt Printing Office, Washington, DC, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, L. Extraction of high-resolution carbonate data for palaeoclimate reconstruction. Nature 352, 148–150 (1991). https://doi.org/10.1038/352148a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352148a0

  • Springer Nature Limited

This article is cited by

Navigation