Skip to main content
Log in

Adaptive protein evolution at the Adh locus in Drosophila

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PROTEINS often differ in amino-acid sequence across species. This difference has evolved by the accumulation of neutral mutations by random drift, the fixation of adaptive mutations by selection, or a mixture of the two. Here we propose a simple statistical test of the neutral protein evolution hypothesis based on a comparison of the number of amino-acid replacement substitutions to synonymous substitutions in the coding region of a locus. If the observed substitutions are neutral, the ratio of replacement to synonymous fixed differences between species should be the same as the ratio of replacement to synonymous polymorphisms within species. DNA sequence data on the Adh locus (encoding alcohol dehydrogenase, EC 1.1.1.1) in three species in the Drosophila melanogaster species subgroup do not fit this expectation; instead, there are more fixed replacement differences between species than expected. We suggest that these excess replacement substitutions result from adaptive fixation of selectively advantageous mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, San Francisco, 1981).

    MATH  Google Scholar 

  2. Lewontin, R. C. A. Rev. Genet. 19, 81–102 (1985).

    Article  CAS  Google Scholar 

  3. Kreitman, M. & Hudson, R. R. Genetics 127, 565–582 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

    Google Scholar 

  5. Sharp, P. M. & Li, W.-H. J. molec. Evol. 28, 398–402 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Kreitman, M. Nature 304, 412–417 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Haldane, J. B. S. J. Genet. 57, 511–524 (1957).

    Article  Google Scholar 

  8. Maynard Smith, J. Nature 219, 1114–1116 (1968).

    Article  Google Scholar 

  9. Sved, J. A. Am. Nat. 102, 283–293 (1968).

    Article  Google Scholar 

  10. Collet, C. J. molec. Evol. 27, 142–146 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Bodmer, M. & Ashburner, M. Nature 309, 425–430 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Cohn, V. H. & Moore, G. P. Molec. Biol. Evol. 5, 154–166 (1988).

    CAS  PubMed  Google Scholar 

  13. Zagursky, R. J., Baumeister, K., Lomas, N. & Berman, M. L. Gene Analyt. Techn. 2, 89–94 (1985).

    Article  CAS  Google Scholar 

  14. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B. & Erlich, H. A. Nature 324, 163–166 (1988).

    Article  ADS  Google Scholar 

  15. Higuchi, R. G. & Ochman, H. Nucleic Acids Res. 17, 5865 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, J., Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991). https://doi.org/10.1038/351652a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351652a0

  • Springer Nature Limited

This article is cited by

Navigation