Skip to main content
Log in

Identification in situ and phylogeny of uncultured bacterial endosymbionts

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE use of Koch's technique to isolate bacteria in pure cultures has enabled thousands of bacterial species to be characterized. But for the many microorganisms that have never been cultivated, DNA amplification in vitro using the polymerase chain reaction is now making their genes accessible1–3. Here we use this technique to study bacteria of the genus Holospora, which live in ciliates4 and whose phylogenetic relationship has remained unknown because they are impossible to cultivate. Species of Holospora are highly infectious5–7 and live in the nuclei of their specific host cells: H. elegans and H. undulata infect micronuclei of Paramecium caudatum8, whereas H. obtusa infects the macronucleus in other strains of the same host species9; Holospora species have a common developmental cycle10–13. We have amplified, cloned and sequenced gene fragments encoding ribosomal RNA of H. obtusa. The phylogenetic position of H. obtusa in the α group of Proteobacteria was determined by 16S rRNA sequence analysis. The sequences were then used to design species- as well as genus-specific rRNA hybridization probes, which enabled us to detect and differentiate individual cells of the endosymbionts in situ. The large amount of rRNA in the cells indicates a high physiological activity of the endosymbionts in the host nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Nature 345, 60–63 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ward, D., Weller, R. & Bateson, M. M. Nature 345, 63–65 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Preer, J. R. Jr & Preer, L. B. Int. J. syst. Bact. 32, 140–141 (1984).

    Article  Google Scholar 

  5. Hafkine, M. W. A. Rev. Inst. Pasteur 4, 148–162 (1890).

    Google Scholar 

  6. Gromov, B. V. & Ossipov, D. V. Int. J. Syst. Bact. 31, 348–352 (1981).

    Article  Google Scholar 

  7. Preer, J. R. Jr & Preer, L. B. In Bergeys Manua. of Systematic Bacteriology (eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 795–813 (Williams & Wilkins, Baltimore, 1984).

    Google Scholar 

  8. Görtz, H. D. & Dieckmann, J. Protistologica 16, 591–603 (1980).

    Google Scholar 

  9. Ossipov, D. V., Skoblo, I. I. & Rautian, M. S. Acta protozool. 14, 263–280 (1975).

    Google Scholar 

  10. Görtz, H. D. Int. Rev. Cytol. 102, 169–213 (1986).

    Article  Google Scholar 

  11. Görtz, H. D., Ahlers, H. & Robenek, H. J. gen. Microbiol. 135, 3079–3085 (1989).

    Google Scholar 

  12. Görtz, H. D., Lellig, S., Miosga, O. & Wiemann, M. J. Bact. 172, 5664–5669 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fujishima, M., Nagahara, K. & Kojima, Y. Zool. Sci. 7, 849–860 (1990).

    CAS  Google Scholar 

  14. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G. Int. J. syst. Bact. 38, 321–325 (1988).

    Article  Google Scholar 

  16. Yang, D., Oyaizu, Y., Oyaizu, K., Olsen, G. J. & Woese, C. R. Proc. natn. Acad. Sci. U.S.A. 82, 4443–4447 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Edman, J. C. et al. Nature 334, 519–522 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Giovannoni, S. J., DeLong, E. F., Olsen, G. J. & Pace, N. R. J. Bact. 170, 720–726 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeLong, E. F., Wickham, G. S. & Pace, N. R. Science 243, 1360–1363 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Amann, R. I., Krumholz, L. & Stahl, D. A. J. Bact. 172, 762–770 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amann, R. I. et al. Appl. environ. Microbiol. 56, 1919–1925 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Torsvik, V., Goksoyr, J. & Daae, F. L. Appl. envir. Microbiol. 56, 782–787.

  23. Hori, H. & Osawa, S. Proc. natn. Acad. Sci. U.S.A. 76, 381–385 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Saitou, N. & Nei, M. Molec. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  25. Neefs, J. M., Van de Peer, Y., Hendriks, L. & De Wachter, R. Nucleic Acids Res. 18, 2237–2318 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dryden, S. C. & Kaplan, S. Nucleic Acids Res. 18, 7267–7277 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, H. J., Freiburg, M. & Görtz, H. D. Microbios. 49, 189–197 (1987).

    CAS  Google Scholar 

  28. Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Woese, C. R., Kandler, O. & Wheelis, H. L. Proc. natn. Acad. Sci. U.S.A. 87, 4576–4579 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amann, R., Springer, N., Ludwig, W. et al. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351, 161–164 (1991). https://doi.org/10.1038/351161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351161a0

  • Springer Nature Limited

This article is cited by

Navigation