Skip to main content

Advertisement

Log in

Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs)1,2. Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: IPAS is a bHLH/PAS factor.
Figure 2: In situ hybridization analysis of IPAS expression in mouse cornea, retina and cerebellum.
Figure 3: IPAS is a dominant negative regulator of HIFs.
Figure 4: Expression of IPAS in hepatoma cells retards tumour growth.
Figure 5: Evidence that IPAS functions as an inhibitor of angiogenesis in the cornea.

Similar content being viewed by others

References

  1. Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885 (1996).

    Article  CAS  Google Scholar 

  2. Wenger, R. H. Mammalian oxygen sensing, signalling and gene regulation. J. Exp. Biol. 203, 1253–1263 (2000).

    CAS  PubMed  Google Scholar 

  3. Krogh, A., Brown, M., Mian, I. S., Sjolander, K. & Haussler, D. Hidden Markov models in computational biology. Applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994).

    Article  CAS  Google Scholar 

  4. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA 94, 4273–4278 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  Google Scholar 

  7. Semenza, G. L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  8. Kallio, P. J., Wilson, W. J., O'Brien, S., Makino, Y. & Poellinger, L. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J. Biol. Chem. 274, 6519–6525 (1999).

    Article  CAS  Google Scholar 

  9. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Wiesener, M. S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 (1998).

    CAS  PubMed  Google Scholar 

  11. Li, H., Ko, H. P. & Whitlock, J. P. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1α. J. Biol. Chem. 271, 21262–21267 (1996).

    Article  CAS  Google Scholar 

  12. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol. 16, 4604–4613 (1996).

    Article  CAS  Google Scholar 

  13. Poellinger, L. in Inducible Gene Expression (ed. Baeuerle, P. A.) 177–205 (Birkhäuser, Boston, 1995).

    Book  Google Scholar 

  14. Thakur, A., Willcox, M. D. & Stapleton, F. The proinflammatory cytokines and arachidonic acid metabolites in human overnight tears: homeostatic mechanisms. J. Clin. Immunol. 18, 61–70 (1998).

    Article  CAS  Google Scholar 

  15. Sack, R. A., Beaton, A. R. & Sathe, S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr. Eye Res. 18, 186–193 (1999).

    Article  CAS  Google Scholar 

  16. Gradin, K. et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol. 16, 5221–5231 (1996).

    Article  CAS  Google Scholar 

  17. Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 14, 34–44 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14, 391–396 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, J. et al. PR 39, a peptide regulator of angiogenesis. Nature Med. 6, 49–55 (2000).

    Article  CAS  Google Scholar 

  20. Norton, J. D., Deed, R. W., Craggs, G. & Sablitzky, F. Id helix-loop-helix protein in cell growth and differentiation. Trends Cell Biol. 8, 58–65 (1998).

    CAS  PubMed  Google Scholar 

  21. Eddy, S. R. Multiple alignment using hidden Markov models. Ismb 3, 114–120 (1995).

    CAS  PubMed  Google Scholar 

  22. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    Article  CAS  Google Scholar 

  23. Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA 95, 12208–12213 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Cao, R. et al. Suppression of aniogenesis by a novel inhibitor, K1-5, generated by plasmin-mediated proteolysis. Proc. Natl Acad. Sci. USA 96, 5728–5733 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Fujii-Kuriyama and I. Pongratz for reagents. This work was supported by grants from the Swedish Medical Research Council, Pharmacia Corporation, Swedish Cancer Society, the Human Frontiers Science Program, the Uehara Memorial Foundation, and the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Poellinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makino, Y., Cao, R., Svensson, K. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001). https://doi.org/10.1038/35107085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35107085

  • Springer Nature Limited

This article is cited by

Navigation