Skip to main content
Log in

Orbital evolution of low-mass X-ray binaries due to radiation driven mass transfer

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A LOW-MASS X-ray binary (LMXB) consists of a compact star, probably a neutron star, accreting mass from a low-mass (≤ M⊙) companion via an accretion disk. Of ∼100 known LMXBs in the Galaxy, only four have stable enough X-ray modulations to have allowed the reliable determination of orbital period changes. For these four LMXBs, all of which have Porb≤5.6h, the measured values1–4 of P⊙orb/Porb disagree markedly with what would be expected for orbital evolution driven by angular momentum loss due to gravitational radiation, possibly supplemented by magnetic braking; the empirically derived timescale for orbital evolution is ∼100 times less than expected. On the assumption that the observed period changes are secular, and not due to some longer-term periodic change, I argue here that the observed behaviour of LMXBs can be explained as the result of mass loss from the companion star caused by irradiation of the secondary star and accretion disk by the primary5. The typical lifetime of a radiation-driven LMXB is expected to be ∼106–107yr. This reduced evolutionary timescale can resolve the statistical discrepancy between the number of binary millisecond pulsars and of their presumed LMXB progenitors if about half of all the LMXBs are radiation-driven5–7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitamoto, S., Miyamoto, S. & Matsui, W. Publs. astr. Soc. Japan 39, 259–285 (1987).

    ADS  CAS  Google Scholar 

  2. Hellier, C., Mason, K. O., Smale, A. P. & Kilkenny, D. Mon. Not. r. astr. Soc. 244, 39P–43P (1990).

    ADS  Google Scholar 

  3. Parmar, A. N., Verbunt, F., Smale, A. P. & Corbet, R. H. D. Astrophys. J. 366, 253–260 (1991).

    Article  ADS  Google Scholar 

  4. Tan, J. et al. Astrophys. J. in the press.

  5. Tavani, M. in Proc. 23rd ESLAB Symp. on X-Ray Binaries Vol. 1 (ed. White, N.) 241–246 (ESA spec. Publ. 296, 1989).

    Google Scholar 

  6. Tavani, M. Bull. Am. astr. Soc. 24, 1204 (1989).

    ADS  Google Scholar 

  7. Tavani, M. Astrophys. J. 366, L27–L31 (1981).

    Article  ADS  Google Scholar 

  8. Faulkner, J. Astrophys. 170, L99–L102 (1971).

    Article  ADS  Google Scholar 

  9. Rappaport, S., Joss, P. C. & Webbink, R. F. Astrophys. 254, 616 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Verbunt, F. Mon. Not. R. Astr. Soc. 209, 227–240 (1984).

    Article  ADS  Google Scholar 

  11. Rappaport, S., Verbunt, F. & Joss, P. C. Astrophys. J. 275, 713 (1983).

    Article  ADS  Google Scholar 

  12. Pylyser, E. & Savonije, G. J. Astr. Astrophys. 191, 57 (1988).

    ADS  Google Scholar 

  13. Stella, L., White, N. & Priedhorsky, W. Astrophys. J. 315, L49 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Rappaport, S., Nelson, L. A., Ma, C. P. & Joss, P. C. Astrophys. J. 322, 842–851 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Ruderman, M., Shaham, J. & Tavani, M. Astrophys. J. 336, 507 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Ruderman, M., Shaham, J., Tavani, M. & Eichler, D. Astrophys. J. 343, 292 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Tavani, M., Ruderman, M. & Shaham, J. Astrophys. J. 342, L31 (1989).

    Article  ADS  Google Scholar 

  18. London, R. A., McCray, R. & Auer, L. H. Astrophys. J. 243, 970 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Arons, J. Astrophys. J. 184, 539–547 (1973).

    Article  ADS  Google Scholar 

  20. Basko, M. M. & Sunyaev, R. A. Astrophys. Space Sci. 23, 117–128 (1974).

    Article  ADS  Google Scholar 

  21. London, R. A. & Flannery, B. P. Astrophys. J. 258, 260–267 (1982).

    Article  ADS  Google Scholar 

  22. Begelman, M. C. & McKee, C. F. Astrophys. J. 271, 89 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Savonije, G. J. in Accretion-Driven X-Ray Sources (eds Lewin, W. H. G. & van den Heuvel, E. P. J.) 343 (Cambridge University Press, 1983).

    Google Scholar 

  24. Molnar, L. A. Astrophys. J. 331, L25 (1988).

  25. Fruchter, A. S., Stinebring, D. R. & Taylor, J. H. Nature 333, 237 (1988).

    Article  ADS  Google Scholar 

  26. Molnar, L. A., Kouba, J. A. & Raymond, J. C. Bull. Am. astr. Soc. 22, 1339 (1990).

    ADS  Google Scholar 

  27. Ritter, H. Astr. Astrophys. Suppl. (in the press).

  28. van der Klis, M. & Bonnet-Bidaud, J. M. Astr. Astrophys. 95, L5–L9 (1981).

    ADS  Google Scholar 

  29. Willingdale, R., King, A. R. & Pounds, K. A. Mon. Not. r. astr. Soc. 215, 295 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavani, M. Orbital evolution of low-mass X-ray binaries due to radiation driven mass transfer. Nature 351, 39–41 (1991). https://doi.org/10.1038/351039a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351039a0

  • Springer Nature Limited

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Navigation