Skip to main content
Log in

Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The loose material—regolith—on the surfaces of asteroids is thought to represent ballistically emplaced ejecta from impacts1,2 but the identification of source craters and the detailed study of the regolith modification have been hampered by the limited spatial resolution and area coverage of the few asteroids imaged by spacecraft. Here we report the results of global mapping of the asteroid 433 Eros from high-resolution images obtained by the NEAR-Shoemaker spacecraft. Based on the images and ejecta-emplacement models, we suggest that most large ejecta blocks on Eros originate from a relatively young 7.6-km-diameter crater. A large fraction of the ejecta from impacts pre-dating that crater has apparently been buried or eroded. The images also show evidence for the action of a variety of sorting environments for regolith particles after they are deposited on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Large craters and blocks on Eros.
Figure 2: Distribution of blocks on Eros.
Figure 3: Block size frequencies on the surface of Eros.

Similar content being viewed by others

References

  1. Housen, K. R., Wilkening, L. L., Chapman, C. R. & Greenberg, R. Asteroidal regoliths. Icarus 39, 317–351 (1979).

    Article  ADS  Google Scholar 

  2. Geissler, P. et al. Erosion and ejecta reaccretion on 243 Ida and its moon. Icarus 120, 140–157 (1996).

    Article  ADS  Google Scholar 

  3. Thomas, P. C. Ejecta emplacement on the martian satellites. Icarus 131, 78–106 (1998).

    Article  ADS  Google Scholar 

  4. Thomas, P. C. et al. Eros: Shape, slopes, and slope processes. Bull. Am. Astron. Soc. 32, 994 (2000).

    ADS  Google Scholar 

  5. Veverka, J. et al. The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413, 390–393 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Cintala, M. J., Garvin, J. B. & Wetzel, S. J. The distribution of blocks around a fresh lunar mare crater. Proc. Lunar Planet. Sci. Conf. 13, 100–101 (1982).

    ADS  Google Scholar 

  7. Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164 (1993).

    Article  ADS  Google Scholar 

  8. Moore, H. H. in Analysis of Apollo 10 Photography and Visual Observations 26–27 NASA SP-232 (NASA, Washington DC, 1971).

    Google Scholar 

  9. Lee, S. W., Thomas, P. & Veverka, J. Phobos, Deimos, and the Moon: Size and distribution of crater ejecta blocks. Icarus 68, 77–86 (1986).

    Article  ADS  Google Scholar 

  10. Lee, P. C. et al. Ejecta blocks on 243 Ida and on other asteroids. Icarus 120, 87–105 (1996).

    Article  ADS  Google Scholar 

  11. Hartmann, W. K. Terrestrial, lunar, and interplanetary rock fragmentation. Icarus 10, 201–213 (1969).

    Article  ADS  Google Scholar 

  12. Shoemaker, E. M. et al. Television observations from Surveyor V. JPL-NASA Technical Report 32-1246 (NASA, Washington DC, 1967).

  13. Meloy, T. & O'Keefe, J. A. Size distribution of lunar surface materials. J. Geophys. Res. 73, 2299–2308 (1968).

    Article  ADS  Google Scholar 

  14. Cintala, M. J. & McBride, K. M. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography. NASA Technical Memorandum 104804 (NASA, Washington DC, 1995).

  15. Thomas, P. C. et al. Phobos: regolith and ejecta blocks investigated with Mars Orbiter Camera images. J. Geophys. Res. 105, 15091–15106 (2000).

    Article  ADS  Google Scholar 

  16. Horstmann, K. C. & Melosh, H. J. Drainage pits in cohesionless materials: Implications for the surface of Phobos. J. Geophys. Res. 94, 12433–12441 (1989).

    Article  ADS  Google Scholar 

  17. Duennebier, F. K. & Sutton, G. H. Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974).

    Article  ADS  Google Scholar 

  18. Lee, P. C. Dust levitation on asteroids. Icarus 124, 181–194 (1996).

    Article  ADS  Google Scholar 

  19. Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. & Carcich, B. The nature of ponded deposits on Eros. Nature 413, 396–400 (2001).

    Article  ADS  CAS  Google Scholar 

  20. Houston, W. N., Moriwaki, Y. & Chang, C. S. Downslope movement of lunar soil and rock caused by meteoroid impact. Proc. 4th Lunar Sci. Conf. 3, 2361–2364 (1973).

    Google Scholar 

  21. Greenberg, R., Nolan, M. C., Bottke, W. F., Kolvoord, R. A. & Veverka, J. Collisional history of Gaspra. Icarus 107, 84–97 (1994).

    Article  ADS  Google Scholar 

  22. Arvidson, R. E., Drozd, R. J., Hohenberg, C. M., Morgan, C. J. & Popeau, P. Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface. Moon 13, 67–79 (1975).

    Article  ADS  Google Scholar 

  23. Horz, F., Schneider, E., Gault, D. E., Hartung, J. B. & Brownlee, D. Catastrophic rupture of lunar rocks: A Monte Carlo simulation. Moon 13, 235–258 (1975).

    Article  ADS  Google Scholar 

  24. Reedy, R. C., Arnold, J. R. & Lal, D. Cosmic ray record in solar system matter. Annu. Rev. Nucl. Part. Sci. 33, 505–537 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. May, B. Carcich, J. Joseph and R. Chomko for technical help. This work was funded by contracts from the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Veverka, J., Robinson, M. et al. Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros. Nature 413, 394–396 (2001). https://doi.org/10.1038/35096513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096513

  • Springer Nature Limited

This article is cited by

Navigation