Skip to main content
Log in

DNA microarrays and beyond: completing the journey from tissue to cell

  • Commentary
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

For the cell biologist, identifying changes in gene expression using DNA microarrays is just the start of a long journey from tissue to cell. We discuss how chip users can first filter noise (false-positives) from daunting microarray datasets. Combining laser capture microdissection with real-time polymerase chain reaction and reverse transcription is a helpful follow-up step that allows expression of selected genes to be quantified in populations of recovered cells. The voyage from chip to single cell can be completed using sensitive new in situ hybridization and immunohistochemical methods based on tyramide signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Dealing with noise in microarray datasets.
Figure 2: Illustration of tyramide signal amplification (TSA)-based in situ hybridization (ISH).

References

  1. Bassett, D. E. Jr, Eisen, M. B. & Boguski, M. S. Gene expression informatics — it's all in your mine. Nature Genet. 21, 51–55 (1999).

    Article  CAS  Google Scholar 

  2. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    Article  CAS  Google Scholar 

  3. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 742–752 (2000).

    Article  Google Scholar 

  4. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  Google Scholar 

  5. Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. Nature Genet. 25, 294–297 (2000).

    Article  CAS  Google Scholar 

  6. Claverie, J. M. Computational methods for the identification of differential and coordinated gene expression. Hum. Mol. Genet. 8, 1821–1832 (1999).

    Article  CAS  Google Scholar 

  7. Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998).

    Article  CAS  Google Scholar 

  8. Mills, J. C. & Gordon, J. I. A new approach for filtering noise from high density oligonucleotide microarray datasets. Nucleic Acids Res. 29, e72 (2001).

    Article  CAS  Google Scholar 

  9. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  10. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  Google Scholar 

  11. Brazma, A., Robinson, A., Cameron, G. & Ashburner, M. One-stop shop for microarray data. Nature 403, 699–700 (2000).

    Article  CAS  Google Scholar 

  12. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

  13. Steuerwald, N., Cohen, J., Herrera, R. J. & Brenner, C. A. Analysis of gene expression in single oocytes and embryos by real-time rapid cycle fluorescence monitored RT-PCR. Mol. Hum. Reprod. 5, 1034–1039 (1999).

    Article  CAS  Google Scholar 

  14. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  15. Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F. & Maronpot, R. R. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol. Carcinog. 25, 86–91 (1999).

    Article  CAS  Google Scholar 

  16. Jin, L. et al. Analysis of anterior pituitary hormone mRNA expression in immunophenotypically characterized single cells after laser capture microdissection. Lab. Invest. 79, 511–512 (1999).

    CAS  Google Scholar 

  17. Banks, R. E. et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis — preliminary findings. Electrophoresis 20, 689–700 (1999).

    Article  CAS  Google Scholar 

  18. Simone, N. L. et al. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452 (2000).

    Article  CAS  Google Scholar 

  19. Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H. & Gordon, J. I. Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc. Natl Acad. Sci. USA (in the press).

  20. van Gijlswijk, R. P. et al. Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 45, 375–382 (1997).

    Article  CAS  Google Scholar 

  21. Wiedorn, K. H., Kuhl, H., Galle, J., Caselitz, J. & Vollmer, E. Comparison of in situ hybridization, direct and indirect in situ PCR as well as tyramide signal amplification for the detection of HPV. Histochem. Cytochem. 111, 89–95 (1999).

    Article  CAS  Google Scholar 

  22. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  Google Scholar 

  23. Zaidi, A. U., Enomoto, H., Milbrandt, J. & Roth, K. A. Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J. Histochem. Cytochem. 48, 1369–1376 (2000).

    Article  CAS  Google Scholar 

  24. Ohyama, H. et al. Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29, 530–536 (2000).

    Article  CAS  Google Scholar 

  25. Baugh, L. R., Hill, A. A., Brown, E. L. & Hunter, C. P. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29, E29 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hooper, D. Syder, T. Stappenbeck, M. Wong and P. Sullivan for helpful comments. Work in our laboratories cited here was supported by grants from the NIH and from NEN Life Science Products (to K.A.R.). J.C.M. is a postdoctoral fellow of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, J., Roth, K., Cagan, R. et al. DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3, E175–E178 (2001). https://doi.org/10.1038/35087108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087108

  • Springer Nature Limited

This article is cited by

Navigation