Skip to main content
Log in

Magnetic-field-induced superconductivity in a two-dimensional organic conductor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect1,2, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called ‘orbital’ effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost3. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers4. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor λ-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene5,6,7,8. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: a, Temperature versus magnetic field phase diagram for λ-(BETS)2FeCl4 when the magnetic field is applied parallel to the a′ or c axis.
Figure 2: Interlayer resistance (for current parallel to the b* axis) when the magnetic field is exactly parallel to the conduction layers.
Figure 3: Magnetic torque measured by cantilever technique.

Similar content being viewed by others

References

  1. Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).

    Article  ADS  CAS  Google Scholar 

  2. Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 15, 266–267 (1962).

    Article  ADS  Google Scholar 

  3. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1975).

    Google Scholar 

  4. Klemm, R. A., Luther, A. & Beasley, M. R. Theory of the upper critical field in layered superconductors. Phys. Rev. B 12, 877–891 (1975).

    Article  ADS  Google Scholar 

  5. Brossard, L. et al. Interplay between chains of S = 5/2 localised spins and two-dimensional sheets of organic donors in the synthetically built magnetic multilayer λ-(BETS)2FeCl4. Eur. Phys. J. B 1, 439–452 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Kobayashi, H. et al. New BETS conductors with magnetic anions (BETS=bis(ethylenedithio)tetraselenafulvalene). J. Am. Chem. Soc. 118, 368–377 (1996).

    Article  CAS  Google Scholar 

  7. Kobayashi, H. et al. Electric and magnetic properties and phase diagram of a series of organic superconductors λ-(BETS)2GaXZY1-z [X, Y=F, Cl, Br; 0 < z < 2]. Phys. Rev. B 56, R8526–R8529 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Akutsu, H. et al. Highly correlated organic conductor with magnetic anions exhibiting a π-d coupled metal-insulator transition, λ-(BETS)2FeBrxCl1-x. J. Am. Chem. Soc. 119, 12681–12682 (1997).

    Article  CAS  Google Scholar 

  9. Brooks, J. S., Naughton, M. J., Ma, Y. P., Chaikin, P. M. & Chamberlin, R. V. Small sample magnetometers for simultaneous magnetic and resistive measurements at low temperatures and high magnetic fields. Rev. Sci. Instrum. 58, 117–121 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Meul, H. W. et al. Observation of magnetic-field-induced superconductivity. Phys. Rev. Lett. 53, 497–500 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Jaccarino, V. & Peter, M. Ultra-high-field superconductivity. Phys. Rev. Lett. 9, 290–292 (1962).

    Article  ADS  Google Scholar 

  12. Lebed, A. G. Reversible nature of the orbital mechanism for the suppression of superconductivity. JETP Lett 44, 114–117 (1986).

    ADS  Google Scholar 

  13. Dupuis, N., Montambaux, G. & Sa de Melo, C. A. R. Quasi-one-dimensional superconductors in strong magnetic field. Phys. Rev. Lett. 70, 2613–2616 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Miyazaki, M., Kishigi, K. & Hasegawa, Y. Superconductivity of quasi-one- and quasi-two-dimensional tight binding electrons in a magnetic field. J. Phys. Soc. Jpn 67, 2618–2621 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Shimahara, H. Coexistence of singlet and triplet attractive channels in the pairing interactions mediated by antiferromagnetic fluctuations. J. Phys. Soc. Jpn 69, 1966–1969 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Sa de Melo, C. A. R. Paramagnetism and reentrant behaviour in quasi-one-dimensional superconductors at high magnetic fields. Physica C 260, 224–230 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Tanatar, M. A. et al. Anisotropy of the upper critical field of the organic conductor λ-(BETS)2GaCl4. J. Supercond. 12, 511–514 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Uji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uji, S., Shinagawa, H., Terashima, T. et al. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 410, 908–910 (2001). https://doi.org/10.1038/35073531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073531

  • Springer Nature Limited

This article is cited by

Navigation