Skip to main content
Log in

Neanderthal DNA

Not just old but old and cold?

  • Brief Communication
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The successful retrieval of ancient DNA from two geographically dispersed Neanderthal skeletons1,2 has fuelled a demand for more Neanderthal DNA sequences for analysis. However, these exceptionally well-preserved specimens were geologically young and the mean annual temperature of their cave sites low, so the survival of this ancient DNA could have been due to unusually favourable conditions. Here we calculate the thermal history of a range of Holocene and Pleistocene bones whose DNA quality has been tested and find that in only very few sites with Neanderthal remains is the preservation of DNA likely to match the quality of that from the skeleton found at Mezmaiskaya Cave2. We recommend that any additional Neanderthal destined for destructive analysis should be carefully selected, taking into account its integrated thermal history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The success of amplifying ancient DNA by polymerase chain reaction1,2,3,4,5,6,7,8 is related to its thermal age — the thermal age of the original Neanderthal DNA amplification1 represents the limit using current techniques.

Similar content being viewed by others

References

  1. Krings, M. et al. Cell 90, 19–30 (1997).

    Article  CAS  Google Scholar 

  2. Ovchinnikov, I. et al. Nature 404, 490–493 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Cooper, A. et al. Science 277, 5329–5332 (1997).

    Article  Google Scholar 

  4. Leonard, J. A., Wayne, R. K. & Cooper, A. Proc. Natl Acad. Sci. USA 97, 1651–1654 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Höss, M., Pääbo, S. & Vereshchagin, N. K. Nature 370, 333 (1994).

    Article  Google Scholar 

  6. Cooper, A. et al. Nature 381, 484 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Fleischer, R. C., Olson, S. L., James, H. F. & Cooper, A. C. Auk 117, 1055–1060 (2000).

    Article  Google Scholar 

  8. Colson, I. B., Bailey, J. F., Vercauteren, M. & Sykes, B. C. Ancient Biomol. 1, 109–117 (1997).

    CAS  Google Scholar 

  9. Vandenberghe, J., Coope, R. & Kasse, K. J. Quat. Sci. 13, 361–366 (1998).

    Article  Google Scholar 

  10. Guiot, J. et al. Palaeogeogr. Palaeoclimatol. Palaeoecol. 103, 73–93 (1993).

    Article  Google Scholar 

  11. Elias, S. A. Quat. Res. 53, 229–235 (2000).

    Article  Google Scholar 

  12. Lindahl, T. & Nyberg, B. Biochemistry 11, 3610–3618 (1972).

    Article  CAS  Google Scholar 

  13. Zhang, T., Osterkamp, T. E. & Stamnes, K. Permafrost Periglac. Process. 8, 45–67 (1997).

    Article  CAS  Google Scholar 

  14. Osborne, M. R. & Phillips, D. H. Chem. Res.Toxicol. 13, 257–261 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin I. Smith.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C., Chamberlain, A., Riley, M. et al. Not just old but old and cold?. Nature 410, 771–772 (2001). https://doi.org/10.1038/35071177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071177

  • Springer Nature Limited

This article is cited by

Navigation