Skip to main content
Log in

Varied pore organization in mesostructured semiconductors based on the [SnSe4]4- anion

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Open framework metal chalcogenide solids, with pore sizes in the nano- and mesoscale, are of potentially broad technological and fundamental interest in research areas ranging from optoelectronics to the physics of quantum confinement1,2. Although there have been significant advances in the design and synthesis of mesostructured silicas3,4, the construction of their non-oxidic analogues still remains a challenge. Here we describe a synthetic strategy that allows the preparation of a large class of mesoporous materials based on supramolecular assembly of tetrahedral Zintl anions [SnSe4]4- with transition metals in the presence of cetylpyridinium (CP) surfactant molecules. These mesostructured semiconducting selenide materials are of the general formulae (CP)4-2xMxSnSe4 (where 1.0 < x < 1.3; M=Mn, Fe, Co, Zn, Cd, Hg). The resulting materials are open framework chalcogenides and form mesophases with uniform pore size (with spacings between 35 and 40 Å). The pore arrangement depends on the synthetic conditions and metal used, and include disordered wormhole, hexagonal and even cubic phases. All compounds are medium bandgap semiconductors (varying between 1.4 and 2.5 eV). We expect that such semiconducting porous networks could be used for optoelectronic, photosynthetic and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: X-ray scattering of mesostructured chalcogenides.
Figure 2: Transmission electron microscope images of mesostructured chalcogenides.
Figure 3: 119Sn Mössbauer spectra (85 K) with derived δ/ΔEq parameters.
Figure 4: Thermogravimetric data and optical absorption spectra.

Similar content being viewed by others

References

  1. Weiss, D. et al. Quantized periodic-orbits in large antidot arrays. Phys. Rev. Lett. 70, 4118–4121 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Ozin, G. A. Nanomaterials—endosemiconductors and exosemiconductors. Adv. Chem. Ser. 245, 335–371 (1995).

    CAS  Google Scholar 

  3. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  5. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  6. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. & Schuth, F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Edn Engl. 35, 541–543 (1996).

    Article  CAS  Google Scholar 

  7. Attard, G. S., Goltner, C. G., Corker, J. M., Henke, S. & Templer, R. H. Liquid-crystal templates for nanostructured metals. Angew. Chem. Int. Edn Engl. 36, 1315–1317 (1997).

    Article  CAS  Google Scholar 

  8. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Li, H. L. et al. Supertetrahedral sulfide crystals with giant cavities and channels. Science 283, 1145–1147 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Bowes, C. L. & Ozin, G. A. Self-assembling frameworks: Beyond microporous oxides. Adv. Mater. 8, 13–18 (1996).

    Article  CAS  Google Scholar 

  11. MacLachlan, M. J., Coombs, N. & Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4- clusters. Nature 397, 681–684 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Wachhold, M. et al. Mesostructured non-oxidic solids with adjustable worm-hole shaped pores: M-Ge-Q (Q = S, Se) frameworks based on tetrahedral [Ge4Q10]4- clusters. Adv. Mater. 12, 85–91 (2000).

    Article  CAS  Google Scholar 

  13. Rangan, K. K., Billinge, S. J. L., Petkov, V., Heising, J. & Kanatzidis, M. G. Aqueous mediated synthesis of mesostructured manganese germanium sulfide with hexagonal order. Chem. Mater. 11, 2629–2632 (1999).

    Article  CAS  Google Scholar 

  14. Wachhold, M. et al. Mesostructured metal germanium sulfide and selenide materials based on the tetrahedral [Ge4S10]4- and [Ge4Se10]4- units: Surfactant templated three-dimensional disordered frameworks perforated with worm holes. J. Solid State Chem. 152, 21–36 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Klepp, K. O. Na4SnSe4 and K4SnSe4, new selenostannates with discrete anions. Z. Naturforsch. B 47, 411–417 (1992).

    Article  CAS  Google Scholar 

  16. Zhao, D. Y., Luan, Z. H. & Kevan, L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chem. Commun. 1009–1010 (1997).

  17. Lippens, P. E. Interpretation of 119Sn Mössbauer isomer shifts in complex tin chalcogenides. Phys. Rev. B 60, 4576–4586 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Pankove, J. I. Optical Processes in Semiconductors (Dover, New York, 1971).

    Google Scholar 

Download references

Acknowledgements

This work made use of the SEM and TEM facilities of the Center for Advanced Microscopy at Michigan State University. Financial support from the National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trikalitis, P., Rangan, K., Bakas, T. et al. Varied pore organization in mesostructured semiconductors based on the [SnSe4]4- anion. Nature 410, 671–675 (2001). https://doi.org/10.1038/35070533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070533

  • Springer Nature Limited

This article is cited by

Navigation