Skip to main content
Log in

Evaporation in the young solar nebula as the origin of ‘just-right’ melting of chondrules

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Chondrules1,2,3,4,5 are millimetre-sized, solidified melt spherules formed in the solar nebula by an early widespread heating event of uncertain nature6,7,8. They were accreted into chondritic asteroids, which formed about 4.56 billion years ago and have not experienced melting or differentiation since that time. Chondrules have diverse chemical compositions, corresponding to liquidus temperatures1,4,9 in the range 1,350–1,800 °C. Most chondrules, however, show porphyritic textures (consisting of large crystals in a distinctly finer grained or glassy matrix), indicative of melting within the narrow range 0–50 °C below the liquidus9,10. This suggests an unusual heating mechanism for chondrule precursors, which would raise each individual chondrule to just the right temperature (particular to individual bulk composition) in order to form porphyritic textures. Here we report the results of isothermal melting of a chondritic composition at nebular pressures. Our results suggest that evaporation stabilizes porphyritic textures over a wider range of temperatures below the liquidus (about 200 °C) than previously believed, thus removing the need for individual chondrule temperature buffering. In addition, we show that evaporation explains many chondrule bulk and mineral compositions that have hitherto been difficult to understand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Evaporative loss of Fe and Si in experimental residues produces compositions similar to those of natural chondrules4.
Figure 2: Experimental residues formed at 1,580 °C and natural chondrules13 show a similar relationship between calculated liquidus temperatures and bulk composition.
Figure 3: Effect of evaporation on the correlation between maximum temperature and chondrule bulk composition (MgO + Al2O3 - SiO 2 in wt%).

Similar content being viewed by others

References

  1. McSween, H. Y. Jr Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1843–1860 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Grossman, J. N. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 680–696 (Univ. Arizona Press, Tucson, 1988).

    Google Scholar 

  3. Sears, D. W. G., Huang, S. & Benoit, P. H. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 221– 231 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  4. Jones, R. H. FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 60, 3115– 3138 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Hewins, R. H. Chondrules. Annu. Rev. Earth Planet. Sci. 25, 61–83 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Cuzzi, J. N., Dobrovolskis, A. R. & Hogan, R. C. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 35– 43 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  7. Boss, A. P. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 257–263 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  8. Scott, E. R. D., Love, S. G. & Krot, A. N. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 87– 96 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  9. Hewins, R. H. & Radomsky, P. M. Temperature conditions for chondrule formation. Meteoritics 25, 309– 318 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Lofgren, G. E. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 187–196 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  11. Grossman, J. N., Rubin, A. E., Nagahara, H. & King, E. A. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 619–659 (Univ. Arizona Press, Tucson, 1988).

    Google Scholar 

  12. Hewins, R. H., Yu, Y., Zanda, B. & Bourot-Denise, M. Do nebular fractionations, evaporative losses, or both, influence chondrule compositions? Antarct. Met. Res. 10, 294– 317 (1997).

    Google Scholar 

  13. Nagahara, H., Kushiro, I. & Mysen, B. O. Evaporation of olivine: low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar system. Geochim. Cosmochim. Acta 58, 1951–1963 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Yu, Y. & Hewins, R. H. Transient heating and chondrule formation- evidence from Na loss in flash heating simulation experiments. Geochim. Cosmochim. Acta 62, 159– 172 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Wood, J. A. & Hashimoto, A. Mineral equilibrium in fractionated nebular systems. Geochim. Cosmochim. Acta 57, 2377–2388 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Yu, Y. et al. Mass fractionation of K isotopes in chondrule evaporation experiments. Lunar Planet. Sci. XXIX, (1998 ).

  18. Weinbruch, S., Palme, H. & Spettel, B. Refractory forsterite in primitive meteorites: Condensates from the solar nebula? Meteor. Planet. Sci 35, 161–171 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Alexander, C. M. O'D. in Chondrules and the Protoplanetary Disk (eds Hewins, R. H., Jones, R. H. & Scott, E. R. D.) 233–241 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  20. Jones, R. H. & Lofgren, G. E. A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics 28, 213–221 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Weinbruch, S. & Müller, W. F. Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochim. Cosmochim. Acta 59, 3221– 3231 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Weinbruch, S., Buttner, H., Rosenhauer, M. & Hewins, R. H. On the lower limit of chondrule cooling rates. Meteor. Planet. Sci. 33, 65–74 ( 1998).

    Article  ADS  CAS  Google Scholar 

  23. Walker, D., Jurewicz, S. & Watson, E. B. Adcumulus dunite growth in a laboratory thermal gradient. Contrib. Mineral. Petrol. 99, 306– 319 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Connolly, H. C. Jr & Hewins, R. H. Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment: an experimental investigation. Geochim. Cosmochim. Acta 59, 3231– 3246 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Morse for starting materials and the Muséum National d’Histoire Naturelle in Paris for their support. This work was funded by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosmat A. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, B., Hewins, R. & Yu, Y. Evaporation in the young solar nebula as the origin of ‘just-right’ melting of chondrules. Nature 406, 600–602 (2000). https://doi.org/10.1038/35020514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020514

  • Springer Nature Limited

Navigation