Skip to main content

Advertisement

Log in

Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Correction to this article was published on 21 March 1991

Abstract

DIRECT calculation of the air-sea flux of CO2 requires detailed knowledge of the partial pressure of carbon dioxide ( P CO 2 ) and gas-transfer velocities at the surface of the global ocean1, with the available observations of surface P CO 2 suggesting that it varies in a smooth manner with season and position over the major ocean regions2-5. In spring 1989 we mapped surface P CO 2 , total inorganic carbon (TIC), chlorophyll, temperature and salinity at several locations between 47° N and 60° N in the northeast Atlantic near 20° W, observing large variations in P CO 2 on spatial scales of ≪100 km, Correlated with plankton chlorophyll, surface temperature and TIC. The variation of P CO 2 with latitude was in the opposite sense to that previously reported for this region3-5. Thus, in this ocean area and season at least, the air-sea flux is strongly modulated by biological activity and variable on short spatial scales. The inhomogeneity observed suggests that estimates of the oceanic sink for fossil fuel inferred from existing data (relatively sparse even in the North Atlantic) will be subject to significant error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, F., Perigaud, C., Merlivat, L. & Minster, J.-F. Phil. Trans. R. Soc. A325, 71–83 (1988).

    Article  ADS  Google Scholar 

  2. Keeling, C. D. J. geophys. Res. 73, 4543–4553 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Broecker, W. S. et al. J. geophys. Res. 91, 10517–10527 (1986).

    Article  ADS  Google Scholar 

  4. Takahashi, T. Oceanus 32, 22–29 (1989).

    Google Scholar 

  5. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Takahashi, T., Chipman, D. Schechtman, N., Goddard, J. & Wanninkhof, R. Lamont-Doherty tech. Rep. Measurements of the partial pressure of CO 2 in discrete water samples during the North Atlantic Transient tracers in the Oceans project (Columbia University, New York, 1982).

  7. Weiss, R. F. J. chromatogr. Sci. 19, 611–616 (1981).

    Article  CAS  Google Scholar 

  8. Johnson, K. M., Sieburth, J. McN., Williams, P. J. Ie B & Brandstrom, L. Mar. Chem. 21, 117–133 (1987).

    Article  CAS  Google Scholar 

  9. Codispoti, L. A., Friederich, G. E., Iverson, R. L. & Hood, D. W. Nature 296, 242–245 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Takahashi, T. et al. J. Mar. Res. Inst. Iceland 9, 20–36 (1985).

    Google Scholar 

  11. Peng, T.-H., Takahashi, T., Broecker, W. S. & Olafsson, J. Tellus 39B, 439–458 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Sverdrup, H. J. Cons. perm. Int. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  13. Brewer, P. G., Goyet, C. & Dyrssen, D. Science 246, 477–479 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Taylor, A. H., Watson, A. J., Ainsworth, M., Robertson, J. E. & Turner, D. R., Global biogechem. Cycles (in the press).

  15. Etcheto, J. & Merlivat, L. J. geophys. Res. 93, 15,669–15,678 (1988).

    Article  ADS  Google Scholar 

  16. Williams, R. Hydrobiologia 167/168, 151–159 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, A., Robinson, C., Robinson, J. et al. Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature 350, 50–53 (1991). https://doi.org/10.1038/350050a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350050a0

  • Springer Nature Limited

This article is cited by

Navigation