Skip to main content
Log in

Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE p53 protein is rendered temperature-sensitive by a point mutation1. Rat cells transformed by this mutant p53 and an activated ras oncogene grow well at 37°C but cease DNA synthesis and cell division when shifted to 32°C (ref. 1). Immunostaining demonstrates that the mutant p53 protein is in the nucleus of the arrested cells at 32°C but in the cytoplasm of the growing cells at 37°C. This is the first example of a protein which is temperature-sensitive for nuclear transport. The translocation from cytoplasm to nucleus and vice versa occurs 6 h after temperature shift and is coincident with the inhibition of DNA synthesis; transport from cytoplasm to nucleus does not require protein synthesis. Remarkably, inhibition of protein synthesis at 37°C also results in the rapid appearance of mutant p53 in the cell nucleus. These results suggest the presence of a short-lived protein responsible for holding p53 in the cytoplasm at 37°C but not at 32°C. Analysis of a non-temperature-sensitive mutant p53 protein shows that its cytoplasmic location is sensitive to protein synthesis inhibitors but not to temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michalovitz, D., Halvey, O. & Oren, M. Cell 62, 671–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Yewdell, J. W., Gannon, J. V. & Lane, D. P. J. Virol. 59, 444–452 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. EMBO J. 9, 1595–1602 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finlay, C. A. et al. Molec. cell Biol. 8, 531–539 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waseem, N. H. & Lane, D. P. J. Cell Sci. 96, 121–129 (1990).

    CAS  PubMed  Google Scholar 

  6. Kenny, M. K., Schlegel, U., Furneaux, H. & Hurwitz, J. J. biol. Chem. 265, 7693–7700 (1990).

    CAS  PubMed  Google Scholar 

  7. Kalderon, D., Richardson, W. D., Markham, A. F. & Smith, A. E. Nature 311, 33–38 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Dingwall, C. & Lasky, R. A. A. Rev. Cell. Biol. 2, 367–390 (1986).

    Article  CAS  Google Scholar 

  9. Dang, C. V. & Lee, W. M. F. J. biol. Chem. 264, 18,019–18,023 (1989).

    CAS  Google Scholar 

  10. Nasmyth, K., Adolf, G., Lydall, D. & Seddon, A. Cell 62, 631–647 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Steward, R. Cell 59, 1179–1188 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Rushlow, C. A., Han, K., Manley, J. & Levine, M. Cell 59, 1165–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Roth, S., Stein, D. & Nusslein-Volhard, C. Cell 59, 1189–1202 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Lenardo, M. J. & Baltimore, D. Cell 58, 227–229 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Van Etten, R. A., Jackson, P. & Baltimore, D. Cell 58, 669–678 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Oren, M., Maltzman, W. & Levine, A. J. Molec. cell Biol. 1, 101–110 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crawford, L. V., Pim, D. C. & Lamb, P. Molec. biol. Med. 2, 261–272 (1984).

    CAS  PubMed  Google Scholar 

  18. Cattoretti, G., Rilke, F., Andreola, S., D'Amato, L. & Delia, D. Int. J. Cancer 41, 178–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Van Den Berg, F. M. et al. J. Path. 157, 193–199 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, T. et al. Science 246, 491–494 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Baker, J. S. et al. Science 244, 217–221 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nigro, J. M. et al. Nature 342, 705–708 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bartek, J., Iggo, R., Gannon, J. & Lane, D. P. Oncogene 5, 893–899 (1990).

    CAS  PubMed  Google Scholar 

  24. Iggo, R., Gatter, K., Bartek, J., Lane, D. & Harris, A. L. Lancet 675–679 (1990).

  25. Rodrigues, N. R. et al. Proc. natn. Acad. Sci. U.S.A. 87, 7555–7559 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  27. Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A. & Rotter, V. Molec. cell Biol. 10, 6565–6577 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ginsberg, D., Michael-Michalovitz, D., Ginsberg, D. & Oren, M. Molec. cell. Biol. 11, 582–585 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaulsky, G., Ben-Ze'ev, A. & Rotter, V. Oncogene 5, 1707–1711 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, J., Lane, D. Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349, 802–806 (1991). https://doi.org/10.1038/349802a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349802a0

  • Springer Nature Limited

This article is cited by

Navigation