Skip to main content
Log in

Demonstration by NMR of folding domains in lysozyme

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ALTHOUGH there has been much speculation on the pathways of protein folding, only recently have experimental data on the topic been available. The study of proteins under conditions where species intermediate between the fully folded and unfolded states are stable has provided important information, for example about the disulphide intermediates in BPTI1,2, cis/trans proline isomers of RNase A3 and the molten globule state of α-lactalbumin4. An alternative approach to investigating folding pathways has involved detection and characterization of transient conformers in refolding studies using stopped-flow methods coupled with NMR measurements of hydrogen exchange5,6. The formation of intermediate structures has been detected in the early stages of folding of cytochrome c (ref. 7), RNase A8 and barnase9. For α-lactalbumin, hydrogen exchange kinetics monitored by NMR proved to be crucial for identifying native-like structural features in the stable molten globule state10. An analogous partially folded protein stable under equilibrium conditions has not been observed for the structurally homologous protein hen egg-white lysozyme, although there is evidence that a similar but transient state is formed during refolding4–11. Here we describe NMR experiments based on competition between hydrogen exchange and the refolding process which not only support the existence of such a transient species for lysozyme, but enable its structural characteristics to be defined. The results indicate that the two structural domains of lysozyme12,13 are distinct folding domains, in that they differ significantly in the extent to which compact, probably native-like, structure is present in the early stages of folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creighton, T. E. Prog. Biophys. molec. Biol. 33, 231–297 (1978).

    Article  CAS  Google Scholar 

  2. States, D. J., Creighton, T. E., Dobson, C. M. & Karplus, M. J. molec. Biol. 195, 731–739 (1987).

    Article  CAS  Google Scholar 

  3. Schmid, F. X. Biochemistry 22, 4690–4696 (1983).

    Article  CAS  Google Scholar 

  4. Kuwajima, K. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  5. Kim, P. S. & Baldwin, R. L. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  6. Roder, H. & Wütrich, K. Proteins 1, 34–42 (1986).

    Article  CAS  Google Scholar 

  7. Roder, H., Elöve, G. A. & Englander, S. W. Nature 335, 700–704 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Udgaonkar, J. B. & Baldwin, R. L. Nature 335, 694–699 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Bycroft, M., Matouschek, A., Kellis, J. T. Jr, Serrano, L. & Fersht, A. R. Nature 488–490 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Baum, J., Dobson, C. M., Evans, P. A. & Hanley, C. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  11. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. & Sugai, S. Biochemistry 24, 874–881 (1985).

    Article  CAS  Google Scholar 

  12. Janin, J. & Wodak, S. J. Prog. biophys. molec. Biol. 42, 21–78 (1983).

    Article  CAS  Google Scholar 

  13. McCammon, J. A., Gelin, B. R., Karplus, M. & Wolynes, P. G. Nature 262, 325–326 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Kim, P. S. Meth. Enzymol. 131, 136–156 (1986).

    Article  CAS  Google Scholar 

  15. Tanford, C., Aune, K. C. & Ikai, A. J. molec. Biol. 73, 185–197 (1973).

    Article  CAS  Google Scholar 

  16. Kato, S., Okamura, M., Simamoto, N. & Utiyama, H. Biochemistry 20, 1080–1085 (1981).

    Article  CAS  Google Scholar 

  17. Kato, S., Shimamoto, N. & Utiyama, H. Biochemistry 21, 38–43 (1982).

    Article  CAS  Google Scholar 

  18. Ikeguchi, M., Kuwajima, K., Mitani, M. & Sugai, S. Biochemistry 25, 6965–6972 (1986).

    Article  CAS  Google Scholar 

  19. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. & Rupley, J. A. The Enzymes 3rd edn (ed Boyer, P. D.) 7, 665–867 (Academic, New York, 1972).

    Google Scholar 

  20. Redfield, C. & Dobson, C. M. Biochemistry 27, 122–136 (1988).

    Article  CAS  Google Scholar 

  21. Pedersen, T. G. et al. J. molec. Biol. 197, 111–130 (1987).

    Article  Google Scholar 

  22. Topping, K. D. D.Phil. Thesis, University of Oxford, 1988.

  23. Englander, S. W., Downer, N. W. & Teitelbaum, H. A. Rev. Biochem. 41, 903–924 (1972).

    Article  CAS  Google Scholar 

  24. Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. Proc. R. Soc. Lond. Ser. B 167, 365–377 (1967).

    ADS  CAS  Google Scholar 

  25. Privalov, P. L. Adv. Protein Chem. 33, 167–241 (1979).

    Article  CAS  Google Scholar 

  26. Dobson, C. M. & Evans, P. A. Biochemistry 23, 4267–4270 (1984).

    Article  CAS  Google Scholar 

  27. Jeng, M., Englander, S. W., Elöve, G. A., Wand, J. & Roder, H. Biochemistry 29, 10433–10437 (1990).

    Article  CAS  Google Scholar 

  28. Hughson, F. M., Wright, P. E. & Baldwin, R. L. Science 249, 1544–1548 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Schmid, F. X. & Baldwin, R. L. J. molec. Biol. 135, 199–215 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranker, A., Radford, S., Karplus, M. et al. Demonstration by NMR of folding domains in lysozyme. Nature 349, 633–636 (1991). https://doi.org/10.1038/349633a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349633a0

  • Springer Nature Limited

This article is cited by

Navigation