Skip to main content
Log in

An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ERYTHROMYCIN A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea.. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea1, the ery genes encoding the biosynthetic pathway to erythromvein are clustered around the gene (ermE) that confers self-resistance on S. erythraea2–6. The aglycone core of erythro-mycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail7–10 into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis1, to generate a macrolide intermediate, 6-deoxyeryth-ronolide B10. 6-Deoxyerythronolide B is converted into erythro-mycin A through the action2–5,10 of specific hydroxylases, glycosyItransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis5,11. Partial sequencing of this region12 indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherman, D. H. & Hopwood, D. A. A. Rev. Genet. 24, (in the press).

  2. Stanzak, R., Matsushima, P., Baltz, R. H. & Rao, R. N. B. Bio/technology 4, 229–232 (1986).

    CAS  Google Scholar 

  3. Weber, J. M. & Losick, R. Gene 68, 173–180 (1988).

    Article  CAS  Google Scholar 

  4. Weber, J. M., Wierman, C. K. & Hutchinson, C. R. J. Bact. 164, 425–433 (1985).

    CAS  PubMed  Google Scholar 

  5. Weber, J. M., Leung, J. O., Maine, G. T., Potenz, R. H. B., Paulus, T. J. & DeWitt, J. P. J. Bact. 172, 2372–2383 (1990).

    Article  CAS  Google Scholar 

  6. Dhillon, N., Hale, R. S., Cortes, J. & Leadlay, P. F. Molec. Microbiol. 3, 1405–1414 (1989).

    Article  CAS  Google Scholar 

  7. Kaneda, T., Butte, J. C., Taubman, S. B. & Corcoran, J. W. J. biol. Chem. 237, 322–328 (1962).

    CAS  PubMed  Google Scholar 

  8. Cane, D. E., Hasler, H. & Liang, T.-C. J. Am. chem. Soc. 103, 5960–5962 (1981).

    Article  CAS  Google Scholar 

  9. Cane, D. E., Liang, T.-C., Taylor, P. B., Chang, C. & Yang, C.-C. J. Am. chem. Soc. 108, 4957–4964 (1986).

    Article  CAS  Google Scholar 

  10. Seno, E. T. & Hutchinson, C. R. in The Bacteria Vol IX (eds Queener, S. W. & Day, L. E) 231–279 (Academic, New York, 1986).

    Google Scholar 

  11. Tuan, J. S. et al. Gene 90, 21–29 (1990).

    Article  CAS  Google Scholar 

  12. Donadio, S. et al. In: Genetics and Microbiology of Industrial Microorganisms (eds Hershberger, C. L., Queener, S. W. & Hageman, G.) 53–59 (Am. Soc. of Microbiol., Washington, DC 1989).

    Google Scholar 

  13. Kauppinen, S., Siggaard-Andersen, M. & von Wettstein-Knowles, P. Carlsberg Res. Commun. 53, 357–370 (1988).

    Article  CAS  Google Scholar 

  14. Bibb, M. J., Biro, S., Motamedi, H., Collins, J. F. & Hutchinson, C. R. EMBO J. 8, 2727–2736 (1989).

    Article  CAS  Google Scholar 

  15. Sherman, D. H. et al. EMBO J. 8, 2727–2735 (1989).

    Article  Google Scholar 

  16. Schweizer, M. et al. Molec. gen. genet. 203, 479–486 (1986).

    Article  CAS  Google Scholar 

  17. Schweizer, M., Takabayashi, K., Laux, T., Beck, K. F. & Schreglmann, R. Nucleic Acids Res. 17, 567–586 (1988).

    Article  Google Scholar 

  18. Chirala, S. S. et al. J. biol. Chem. 264, 3750–3757 (1989).

    CAS  PubMed  Google Scholar 

  19. Mohamed, A. H., Chirala, S. S., Mody, N. H., Huang, W.-Y. & Wakil, S. J. J. biol. Chem. 263, 12315–12325 (1988).

    CAS  PubMed  Google Scholar 

  20. Staden, R. Nucleic Acids Res. 12, 521–528 (1984).

    Article  CAS  Google Scholar 

  21. Wakil, S. J. Biochemistry 28, 4523–4530 (1990).

    Article  Google Scholar 

  22. Lawen, A. & Zocher, R. J. biol. Chem. 265, 11355–11360 (1990).

    CAS  PubMed  Google Scholar 

  23. Skarpeid, H.-J., Zimmer, T.-L. & Von Doehren, H. Eur. J. Biochem. 189, 517–522 (1990).

    Article  CAS  Google Scholar 

  24. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Frischauf, A.-M., Garoff, H. & Lehrach, H. Nucleic Acids Res. 8, 5541–5549 (1980).

    Article  CAS  Google Scholar 

  26. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortes, J., Haydock, S., Roberts, G. et al. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348, 176–178 (1990). https://doi.org/10.1038/348176a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348176a0

  • Springer Nature Limited

This article is cited by

Navigation