Skip to main content

Advertisement

Log in

Infection of phytoplankton by viruses and reduction of primary productivity

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NATURAL marine waters contain roughly 106 to 109 virus particles per ml, yet their role in aquatic ecosystems and the organisms that they infect remain largely unknown. Electron microscopy has been used to study interactions between viruses and their hosts, focusing mainly on pathogens to prokaryotic organisms1–5. Here we demonstrate that viral pathogens infect a variety of important marine primary producers, including diatoms, cryptophytes, prasinophytes and chroococcoid cyanobacteria. Also, addition to sea water of particles in the 0.002–0.2 μm size range, concentrated from sea water by ultrafiltration, reduced primary productivity ([14C]bicarbonate incorporation) by as much as 78%. These results indicate that, in addition to grazing and nutrient limitation, infection by viruses could be a factor regulating phytoplankton community structure and primary productivity in the oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sieburth, J. McN., Johnson, P. W. & Hargraves, P. E. J. Phycol. 18, 416–425 (1988).

    Article  Google Scholar 

  2. Bergh, Ø., Børsheim, G., Bratbak, G. & Heldal, M. Nature 340, 467–468 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Proctor, L. M. & Fuhrman, J. A. Nature 343, 60–62 (1989).

    Article  ADS  Google Scholar 

  4. Borsheim, K. Y., Bratbak, G., & Heldal, M. Appl. envir. Microbiool. 56, 352–356 (1990).

    CAS  Google Scholar 

  5. Bratbak, G., Heldal, M., Norland, S. & Thingstad, F. Appl. envir. Microbiol. 56, 1400–1405 (1990).

    CAS  Google Scholar 

  6. Miller, S. E. J. Electron Miscros. Tech. 4, 265–301 (1986).

    Article  Google Scholar 

  7. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. J. exp. mar. Biol. Ecol. 117, 279–283 (1987).

    Article  Google Scholar 

  8. Mayer, J. A. & Taylor, F. J. R. Nature 281, 299–301 (1979).

    Article  ADS  Google Scholar 

  9. Waters, R. E. & Chan, A. T. J. gen. Virol. 62, 199–206 (1982).

    Article  Google Scholar 

  10. Meintz, R. H., Schuster, A. M. & Van Etten, J. L. Plant molec. Biol. Rep. 3, 180–187 (1985).

    Article  Google Scholar 

  11. Van Etten, J. L., Xia, Y. & Meintz, R. H. in Plant-Microbe Interactions Vol. 2 (eds Kosuge, T. & Nester, E. W.) 307–325 (Macmillan, New York, 1987).

    Google Scholar 

  12. Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meintz, R. H. Science 219, 994–996 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Shapiro, L. P. & Guillard, R. R. L. in Photosynthetic Picoplankton (eds Platt, T. & Li, W. K. W.) Can. Bull. Fish. aquat. Sci. 214, 371–389 (1986).

    Google Scholar 

  14. Thomsen, H. A. Can. Bull. Fish. aquat. Sci. 214, 121–158 (1986).

    Google Scholar 

  15. Gieskes, W. W. C. & Elbrachter, M. Neth. J. Sea Res. 20, 291–303 (1986).

    Article  CAS  Google Scholar 

  16. Vargo, G. A. et al. Limnol. Oceanogr. 32, 762–767 (1987).

    Article  ADS  Google Scholar 

  17. Sellner, K. G. & Brownlee, D. C. in Toxic Marine Phytoplankton (eds Graneli, E., Sundstrom, B., Edler, L. & Anderson, D. M.) 221–226 (Elsevier, New York, 1990).

    Google Scholar 

  18. Coleman, A. W., Maguire, M. J. & Coleman, J. R. J. Histochem. Cytochem. 29, 959–968 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suttle, C., Chan, A. & Cottrell, M. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467–469 (1990). https://doi.org/10.1038/347467a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347467a0

  • Springer Nature Limited

This article is cited by

Navigation