Skip to main content

Advertisement

Log in

A carbon isotope record of CO2 levels during the late Quaternary

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ANALYSES of gases trapped in continental ice sheets have shown that the concentration of CO2 in the Earth's early atmosphere increased from 180 to 280 p.p.m. during the most recent glacial-interglacial transition1. This change must have been driven by an increase in the concentration of CO2 dissolved in the mixed layer of the ocean2. Biochemical and physiological factors associated with photosynthetic carbon fixation in this layer should lead to a relationship between concentrations of dissolved CO2 and the carbon isotopic composition of phytoplanktonic organic material3, such that increased atmospheric CO2 should enhance the difference in 13C content between dissolved inorganic carbon and organic products of photosynthesis. Here we show that a signal related to atmospheric CO2 levels can be seen in the isotope record of a hemipelagic sediment core, which we can correlate with the CO2 record of the Vostok ice core. Calibration of the relationship between isotope fractionation and CO2 levels should permit the extrapolation of CO2 records to times earlier than those for which ice-core records are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, L. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Boyle, E. A. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  3. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. Am. J. Sci. 289, 436–454 (1989).

    Article  ADS  CAS  Google Scholar 

  4. McCabe, B. thesis, Univ. of Waikato (1985).

  5. Rau, G. H., Takahashi, T. & DesMarais, D. J. Nature 341, 516–518 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H. & Be, A. W. H. Nature 298, 841–844 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Berger, W. H., Killingley, J. S. & Vincent, E. Oceanologica Acta 1, 203–216 (1978).

    CAS  Google Scholar 

  8. Hayes, J. M., Popp, B. N., Takigiku, R. & Johnson, R. Geochim. cosmochim. Acta 53, 2961–2972 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Freeman, K. H., Hayes, J. M., Trendel, J-M. & Albrecht, P. Nature 343, 254–256 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Jasper, J. P. & Gagosian, R. B. Paleoceanography 4, 603–614 (1989).

    Article  ADS  Google Scholar 

  11. Marlowe, I. T. et al. Br. phycol. J. 19, 203–216 (1984).

    Article  Google Scholar 

  12. Bouma, A. H. Am. Ass. Petrol. Geol. Mem. 34, 567–581 (1983).

    Google Scholar 

  13. Bouma, A. H. et al. init. Rep. DSDP Leg 96, 777–780 (1986).

    Google Scholar 

  14. Williams, D. F. & Kohl, B. Int. Rep. DSDP Leg 96, 671–676 (1986).

    CAS  Google Scholar 

  15. Jasper, J. P. & Gagosian, R. B. Geochim. cosmochim. Acta 54, 1117–1132 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Broecker, W. S. Geochim. cosmochim. Acta 46, 1689–1705 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Newman, J. W., Parker, P. L. & Behrens, E. W. Geochim. cosmochim. Acta 37, 225–238 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Ewing, M., Ericson, D. B. & Heezen, B. C. in Habitat of Oil (ed. Weeks, L. G.) 995–1054 (Am. Ass. Petrol. Geol., Tulsa, 1958).

    Google Scholar 

  19. Kohl, B. Init Rep. DSDP Leg 96, 657–670 (1986).

  20. Lorius, C. et al. Nature 316, 591–596 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Broecker, W. S. & van Donk, J. Rev. Geophys. Space Phys. 8, 169–189 (1978).

    Article  ADS  Google Scholar 

  23. Jasper, J. P. & Gagosian, R. B. Nature 342, 60–62 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Steeman Nielsen, E. Marine Photosynthesis (Elsevier, Amsterdam, 1975).

    Google Scholar 

  25. Farrimond, P., Eglinton, G. & Brassell, S. C. in Advances in Organic Geochemistry 1985 (eds Leythaeuser, D. & Rullkotter, J.) 897–903 (Pergamon, Oxford, 1985).

    Google Scholar 

  26. Okada, H. & Mclntyre, A. Micropaleontonology 23, 1–13 (1977).

    Article  Google Scholar 

  27. Broecker, W. S. Prog. Oceanogr. 11, 151–197 (1982).

    Article  ADS  Google Scholar 

  28. Shackleton, N. J., Hall, M. A., Line, J. & Cang, S. Nature 306, 319–322 (1983).

    Article  ADS  CAS  Google Scholar 

  29. de Leeuw, J. W., van der Meer, F. W. & Rijpstra, W. I. C. in Advances in Organic Geochemistry 1979 (eds Douglas, A. G. & Maxwell, J. R.) 211–217 (Pergamon, Oxford, 1980).

    Google Scholar 

  30. Rechka, J. A. & Maxwell, J. R. Tetrahedron Lett. 29, 2599–2600 (1988).

    Article  CAS  Google Scholar 

  31. Constans, R. E. & Parker, P. E. Init. Rep. DSDP Leg 96, 601–630 (1986).

  32. Ledbetter, M. T. Init. Rep. DSDP Leg 96, 685–688 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasper, J., Hayes, J. A carbon isotope record of CO2 levels during the late Quaternary. Nature 347, 462–464 (1990). https://doi.org/10.1038/347462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347462a0

  • Springer Nature Limited

This article is cited by

Navigation