Skip to main content
Log in

Eötvös experiments, lunar ranging and the strong equivalence principle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE strong form of Einstein's equivalence principle, which dictates that gravitational binding energy will suffer the same acceleration in a uniform gravitational field as all other forms of matter and energy, can be tested by comparing the accelerations of the Earth and the Moon towards the Sun. If the Earth's gravitational binding energy, which contributes ∼5 parts in 1010 of its total mass, does not gravitate in the same way as other kinds of mass and energy, the Moon's orbit will be distorted in a characteristic way with an amplitude large enough to be detected by lunar laser-ranging data. But as Nordtvedt1 has pointed out, such a test is accurate only to the extent that no interfering force, such as a very feeble composition-dependent 'fifth force', fortuitously cancels a gravitational binding energy anomaly. Here we review laboratory upper limits on 'fifth forces' to set an upper limit of 1 part in 1012 (95% confidence level) on the Earth–Moon acceleration difference due to non-gravitational forces. Existing lunar-ranging data then verify the strong equivalence principle to an accuracy of 3%, and improved analyses of the lunar data should bring this precision down to the 0.2% level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordtvedt, K. Phys. Rev. D37, 1070–1071 (1988).

    ADS  CAS  Google Scholar 

  2. Shapiro, I. I., Counselman, C. C. III & King, R. W. Phys. Rev. Lett. 36, 555–558 (1976).

    Article  ADS  Google Scholar 

  3. Williams, J. G. et al. Phys. Rev. Lett. 36, 551–554 (1976).

    Article  ADS  Google Scholar 

  4. Roll, P. G., Krotkov, R. & Dicke, R. H. Ann Phys. N.Y. 26, 442–517 (1964).

    Article  ADS  Google Scholar 

  5. Braginsky, V. B. & Panov, V. I. Soviet Phys. JETP 34, 463–466 (1972).

    ADS  Google Scholar 

  6. Heckel, B. R. et al. Phys. Rev. Lett. 63, 2705–2708 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Peccei, R. D., Sola, J. & Wetterich, C. Phys. Lett. B195, 183–190 (1987).

    Article  CAS  Google Scholar 

  8. Allen, C. W. Astrophysical Quantities (Athlone, London, 1976).

    Google Scholar 

  9. Dziewonsky, A. M. & Anderson, D. C. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  10. Morgan, J. W. & Anders, A. Proc. natn. Acad. Sci. U.S.A. 77, 6973–6977 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Ringwood, A. E. Origin of the Earth and Moon (Springer-Verlag, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adelberger, E., Heckel, B., Smith, G. et al. Eötvös experiments, lunar ranging and the strong equivalence principle. Nature 347, 261–263 (1990). https://doi.org/10.1038/347261a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347261a0

  • Springer Nature Limited

Navigation