Skip to main content
Log in

Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE aminoacyl-transfer RNA synthetases (aaRS) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. Out of the 18 known aaRS, only 9 (ref. 1), referred to as class I synthetases (GlnRS, TyrRS, MetRS, GluRS, ArgRS, ValRS, IleRS, LeuRS, TrpRS), display two short common consensus sequences ('HIGH' and 'KMSKS') which indicate, as observed in three crystal structures2–4, the presence of a structural domain (the Rossman fold) that binds ATP. We report here the sequence of Escherichia coll ProRS, a dimer of relative molecular mass 127,402, which is homologous to both ThrRS and SerRS. These three latter aaRS share three new sequence motifs with AspRS, AsnRS, LysRS, HisRS and the β subunit of PheRS. These three motifs (motifs 1, 2 and 3), in a search through the entire data bank, proved to be specific for this set of aaRS (referred to as class II). Class II may also contain AlaRS and GlyRS, because these sequences have a typical motif 3. Surprisingly, this partition of aaRS in two classes is found to be strongly correlated on the functional level with the acylation occurring either on the 2′ OH (class I) or 3′ OH (class II) of the ribose of the last nucleotide of tRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burbaum, J., Starzyk, R. M. & Schimmel, P. Proteins 7, 99–111 (1990).

    Article  CAS  Google Scholar 

  2. Brick, P., Bhat, T. N. & Blow, D. M. J. molec. Biol. 208, 83–98 (1988).

    Article  Google Scholar 

  3. Zelwer, C., Risler, J.-L. & Brunie, S. J. molec. Biol. 155, 63–81 (1982).

    Article  CAS  Google Scholar 

  4. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Science 246, 1135–1142 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Bohman, K. & Isaksson, L. A. Molec. gen. Genet. 177, 603–605 (1980).

    Article  CAS  Google Scholar 

  6. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).

    Article  CAS  Google Scholar 

  7. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 84, 4767–4771 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Brendel, V. & Trifonov, E. V. Nucleic Acids Res. 10, 4411–4427 (1984).

    Article  Google Scholar 

  9. Springer, M., Graffe, M., Dondon, J. & Grunberg-Manago, M. EMBO J. 8, 2417–2427 (1989).

    Article  CAS  Google Scholar 

  10. Moine, H. thesis., Univ. Louis Pasteur, Strasbourg (1990).

  11. Molina, A. J., Peterson, R. & Yang, D.C.H. J. biol. Chem. 264, 16608–16612 (1989).

    Google Scholar 

  12. Gampel, A. & Tzagoloff, A. Proc. natn. Acad Sci. U.S.A. 86, 6023–6027 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Anselme, J. & Härtlein, M. Gene 84, 481–485 (1989).

    Article  CAS  Google Scholar 

  14. Leveque, F., Plateau, P., Dessen, P. & Blanquet, S. Nucleic. Acids Res. 18, 305–312 (1990).

    Article  CAS  Google Scholar 

  15. Wek, R. C., Jackson, B. M. & Hinnenbusch, A. G. Proc. natn. Acad. Sci. U.S.A. 86, 4579–4583 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Gribskov, M., MacLachlan, A. D. & Eisenberg, D. Proc. natn. Acad. Sci. U.S.A. 84, 4355–4358 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Jasin, M., Regan, L. & Schimmel, P. R. Nature 306, 441–447 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Prevost, G., Eriani, G., Kern, D., Dirheimer, G. & Gangloff, J. Eur. J. Biochem. 180, 351–358 (1989).

    Article  CAS  Google Scholar 

  19. Eriani, G. thesis., Univ. Louis Pasteur, Strasbourg (1990).

  20. Hecht, S. M. in Transfer-RNA Structure, Properties and Recognition (eds Schimmel, P. R., Söll, D. & Abelson, J. N.) 345–360 (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

  21. Weiner, A. M. & Maizels, N. Proc. natn. Acad. Sci. U.S.A. 84, 7383–7387 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Fraser, T. H. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 72, 3044–3048 (1975).

    Article  ADS  CAS  Google Scholar 

  23. von der Haar, F. & Cramer, F. Biochemistry 15, 4131–4136 (1976).

    Article  CAS  Google Scholar 

  24. Fersht, A. R. & Kaethner, M. M. Biochemistry 15, 3342–3346 (1976).

    Article  CAS  Google Scholar 

  25. Brune, M., Schumann, R. & Wittinghofer, F. Nucleic Acids Res. 13, 7139–7147 (1985).

    Article  CAS  Google Scholar 

  26. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  27. Eriani, G., Dirheimer, G. & Gangloff, J. Nucleic Acids Res. 17, 5725–5736 (1989).

    Article  CAS  Google Scholar 

  28. Berger, S. L., Wallace, D. M., Puskas, R. S. & Eschenfeldt, W. H. Biochemistry 22, 2365–2373 (1983).

    Article  CAS  Google Scholar 

  29. Argos, P. J. molec. Biol. 193, 385–396 (1987).

    Article  CAS  Google Scholar 

  30. Mirande, M. & Waller, J. P. J. biol. Chem. 263, 18443–18451 (1988).

    CAS  PubMed  Google Scholar 

  31. Nilssen, T. W. et al. Proc. natn. Acad. Sci. U.S.A. 85, 3604–3607 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriani, G., Delarue, M., Poch, O. et al. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990). https://doi.org/10.1038/347203a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347203a0

  • Springer Nature Limited

This article is cited by

Navigation