Skip to main content

Advertisement

Log in

Novel mechanism of voltage-dependent gating in L-type calcium channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ACTIVATION of voltage-dependent calcium channels by membrane depolarization triggers a variety of key cellular responses, such as contraction in heart and smooth muscle and exocytotic secretion in endocrine and nerve cells. Modulation of calcium channel gating is believed to be the mechanism by which several neurotransmitters, hormones and therapeutic agents mediate their effects on cell function. Here we describe a novel type of voltage-dependent equilibrium between different gating patterns of dihy-dropyridine-sensitive (L-type) cardiac Ca2+ channels. Strong depolarizations drive the channel from its normal gating pattern into a mode of gating characterized by long openings and high open probability1,2. The rate constants for conversions between gating modes, estimated from single channel recordings, are much slower than normal channel opening and closing rates, but the equilibrium between modes is almost as steeply voltage-dependent as channel activation and deactivation at more negative potentials. This new mechanism of voltage-dependent gating can explain previous reports of activity-dependent Ca2+ channel potentiation in cardiac3 and other cells2,4,5 and forms a potent mechanism by which Ca2+ uptake into cells could be regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hess, P., Lansman, J. B. & Tsien, R. W. Nature 311, 538–544 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Hoshi, T. & Smith, S. J. Neurosci. 7, 571–580 (1987).

    Article  CAS  Google Scholar 

  3. Lee, K. S. Proc. natn. Acad Sci. U.S.A. 84, 3941–3945 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

    Article  CAS  Google Scholar 

  5. Artalejo, C. R., Dahmer, M., Perlman, R. L. & Fox, A. P. Biophys. J. 55, 593a (1989).

    Google Scholar 

  6. Cavalie, A., Pelzer, D. & Trautwein, W. Pflügers Arch. 406, 241–258 (1986).

    Article  CAS  Google Scholar 

  7. Lacerda, A. E. & Brown, A. M. J. gen. Physiol. 93, 1243–1273 (1989).

    Article  CAS  Google Scholar 

  8. Bean, B. P. J. gen. Physiol. 86, 1–30 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Nilius, B., Hess, P., Lansman, J. B. & Tsien, R. W. Nature 316, 443–446 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 297, 501–504 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Mazzanti, M. & DeFelice, L. J. Biophys. J. (in the press).

  12. Bliss, T. V. P. & Lomo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  13. Kokubun, S. & Reuter, H. Proc. natn. Acad. Sci. U.S.A. 81, 4824–4827 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Cachelin, A. B., dePeyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 402–404 (1983).

    Article  Google Scholar 

  15. Brum, G., Osterrieder, W. & Trautwein, W. Pflügers Arch. 401, 111–118 (1984).

    Article  CAS  Google Scholar 

  16. Yue, D. T., Herzig, S. & Marban, E. Proc. natn. Acad. Sci. U.S.A. 87, 753–757 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Armstrong, D. et al. J. gen. Physiol. 92, 10a (1988).

    Google Scholar 

  18. Catterall, W. A. Science 242, 50–61 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Bean, B. P. & Rios, E. J. gen. Physiol. 94, 65–93 (1989).

    Article  CAS  Google Scholar 

  20. Chen, C. & Hess, P. J. Physiol., Lond. 390, 80P (1987).

    Google Scholar 

  21. Patlak, J. B. & Ortiz, M. J. gen. Physiol. 86, 89–104 (1986).

    Article  Google Scholar 

  22. McManus, O. B. & Magleby, K. L. J. Physiol., Lond. 402, 79–120 (1988).

    Article  CAS  Google Scholar 

  23. Stuehmer, W. et al. FEBS Lett. 242, 199–206 (1988).

    Article  CAS  Google Scholar 

  24. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  25. Colquhoun, D. & Sigworth, F. J. in Single Channel Recordings (eds Sakmann, B. & Neher, E.) 191–264 (Plenum, New York, 1983).

    Book  Google Scholar 

  26. McManus, O. B., Blatz, A. L. & Magleby, K. L. Pflügers Arch. 410, 530–553 (1987).

    Article  CAS  Google Scholar 

  27. Sigworth, F. J. & Sine, S. M. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrobon, D., Hess, P. Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature 346, 651–655 (1990). https://doi.org/10.1038/346651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346651a0

  • Springer Nature Limited

This article is cited by

Navigation