Skip to main content
Log in

Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SYNAPTIC release of glutamate results in a two component excitatory postsynaptic current (e.p.s.c.) at many vertebrate central synapses1–6. Non-N-methyl-D-aspartate receptors mediate a component that has a rapid onset and decay while the component mediated by N-methyl-D-aspartate (NMDA) receptors has a slow rise-time and a decay of several hundred milliseconds, 100 times longer than the mean open time of NMDA channels7–9. The slow decay of the NMDA-mediated e.p.s.c. could be due to residual glutamate in the synaptic cleft resulting in repeated binding and activation of NMDA receptors. However, in cultured hippocampal neurons, we find that the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate has no effect on the slow e.p.s.c. when rapidly applied after activation of the synapse, suggesting that rebinding of glutamate does not occur. In addition, a brief pulse of glutamate to an outside-out membrane patch results in openings of NMDA channels that persist for hundreds of milliseconds, indicating that glutamate can remain bound for this period. These results imply that a brief pulse of glutamate in the synaptic cleft is sufficient to account for the slow e.p.s.c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forsythe, I. D. & Westbrook, G. L. J. Physiol., Lond. 396, 515–533 (1988).

    Article  CAS  Google Scholar 

  2. Westbrook, G. L. & Jahr, C. E. Seminars in the Neurosciences 1, 103–114 (1989).

    Google Scholar 

  3. Dale, N. & Roberts, A. J. Physiol., Lond. 363, 35–59 (1985).

    Article  CAS  Google Scholar 

  4. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  CAS  ADS  Google Scholar 

  5. Collingridge, G. L., Herron, C. E. & Lester, R. A. J. J. Physiol., Lond. 399, 283–300 (1988).

    Article  CAS  Google Scholar 

  6. Hestrin, S., Nicoll, R. A., Perkel, D. J. & Sah, P. J. Physiol., Lond. 422, 203–225 (1990).

    Article  CAS  Google Scholar 

  7. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  CAS  ADS  Google Scholar 

  8. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  CAS  ADS  Google Scholar 

  9. Cull-Candy, S. G. & Usowicz, M. M. Nature 325, 525–528 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Blake, J. F., Brown, M. W. & Collingridge, G. L. Neurosci. Lett. 89, 182–186 (1988).

    Article  CAS  Google Scholar 

  11. Andreasen, M., Lambert, J. D. C. & Jensen, M. S. J. Physiol., Lond. 414, 317–336 (1989).

    Article  CAS  Google Scholar 

  12. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  13. Wigstrom, H., Gustafsson, B. & Huang, Y-Y. Acta physiol. scand. 124, 475–478 (1985).

    Article  CAS  Google Scholar 

  14. Sernagor, E., Kuhn, D., Vyklicky, L. & Mayer, M. Neuron 2, 1221–1227 (1989).

    Article  CAS  Google Scholar 

  15. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  CAS  ADS  Google Scholar 

  16. Colquhoun, D. & Ogden, D. C. J. Physiol., Lond. 395, 131–159 (1988).

    Article  CAS  Google Scholar 

  17. Patneau, D. K. & Mayer, M. L. J. Neurosci. (in the press).

  18. Olverman, H. J., Jones, A. W. & Watkins, J. C. Nature 307, 460–462 (1984).

    Article  CAS  ADS  Google Scholar 

  19. Colquhoun, D., Large, W. A. & Rang, H. P. J. Physiol., Lond. 266, 361–395 (1977).

    Article  CAS  Google Scholar 

  20. Trussell, L. O. & Fischbach, G. D. Neuron 3, 209–218 (1989).

    Article  CAS  Google Scholar 

  21. Tang, C. M., Dichter, M. & Morad, M. Science 243, 1474–1477 (1989).

    Article  CAS  ADS  Google Scholar 

  22. Forsythe, I. D. & Clements, J. D. J. Physiol., Lond. (in the press).

  23. Lester, R. A. J., Quarum, M. L., Parker, J. D., Weber, E. & Jahr, C. E. Molec. Pharmac. 35, 565–570 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, R., Clements, J., Westbrook, G. et al. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990). https://doi.org/10.1038/346565a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346565a0

  • Springer Nature Limited

This article is cited by

Navigation