Skip to main content
Log in

Complete reduction of carbon dioxide to carbon using cation-excess magnetite

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE reduction of gaseous oxides such as CO2 and H2O is an important concern in industrial processes and pollution control. Here we report the reduction of carbon dioxide to carbon with an efficiency of nearly 100% at 290 °C using cation-excess magnetite (Fe3+δO4, δ =0.127). In this reaction, the oxygen in the CO2 is transferred, in the form of O2−, to the cation-excess magnetite, and no gas is evolved. The carbon in the CO2 is reduced to carbon (zero valence) by the addition of an electron donated from the cation-excess magnetite to maintain electrical neutrality during the transfer of the O2− to the magnetite. When we used H2O in place of CO2, hydrogen gas was evolved, indicating that the same mechanism can also reduce H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, J. & Wijin, J. I. J. Ferrite, 136 (Philips Technical Library, Tokyo, 1965).

    Google Scholar 

  2. Kiyama, M. Bull. chem. Soc. Japan 47, 1646–1650 (1974).

    Article  CAS  Google Scholar 

  3. Katsura, T. & Tamaura, Y. Bull. chem. Soc. Japan 52, 96–100 (1979).

    Article  CAS  Google Scholar 

  4. Annersten, H. & Hafner, S. S. Z. Kristallogr. 137, 321–340 (1973).

    CAS  Google Scholar 

  5. Volenik, K., Seberiai, M. & Neid, J. Czech. J. Phys. B25, 1063–1071 (1975).

    Article  ADS  Google Scholar 

  6. Topsøe, H., Dumesic, J. A. & Boudart, M. J. Phys., Paris C6, 411–413 (1974).

    Google Scholar 

  7. JCPDS card 19-629 (Joint Committee on Powder Diffraction Standards, Swarthmore, 1989).

  8. Dieckmann, R. Ber. Bunsenges, phys. Chem. 86, 112–118 (1982).

    Article  CAS  Google Scholar 

  9. Dieckmann, R. & Schmalzried, H. Ber. Bunsenges. phys. Chem. 81, 414–419 (1977).

    Article  CAS  Google Scholar 

  10. Darken, L. S. & Gurry, R. W. J. Am. chem. Soc. 67, 1398–1412 (1945).

    Article  ADS  CAS  Google Scholar 

  11. Darken, L. S. & Gurry, R. W. J. Am. chem. Soc. 68, 798–816 (1945).

    Article  ADS  Google Scholar 

  12. Copperthwaite, R. G., Davies, P. R., Morris, M. A., Roberts, M. W. & Ryder, R. A. Catal. Lett. 1, 11–19 (1988).

    Article  CAS  Google Scholar 

  13. Manning, M. P. & Reid, R. C. ASME Pap. 75-ENAS-22 (Am. Soc. mech. Engineers, 1975).

  14. Wagner, R. C., Carrasquillo, R., Edwards, J. & Holmes, R. 18th Intersoc. Conf. Environmental Systems, SAE Tech. Pap. Ser. 880995, 1–9 (Soc. Automotive Engineers, 1988).

  15. Iwasaki, I. et al. Bull. volc. Soc. Japan, Ser. II 5, 9–24 (1960).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaura, Y., Tahata, M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature 346, 255–256 (1990). https://doi.org/10.1038/346255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346255a0

  • Springer Nature Limited

This article is cited by

Navigation