Skip to main content
Log in

Human U2 snRNA can function in pre-mRNA splicing in yeast

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome (reviewed in refs 1–3). In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation4–9. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3′ splice site10. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different10,11. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5′ domain is essential, although the adjacent ˜950 nucleotides can be deleted without any phenotypic consequence12,13. A 3′-terminal domain of ˜100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins13–15. We have replaced the single copy yeast U2(yU2) gene with human U2(hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. A. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  Google Scholar 

  2. Green, M. R. A. Rev. Genet. 20, 671–708 (1986).

    Article  CAS  Google Scholar 

  3. Luhrmann, R. in Small Nuclear Ribonucteoprotein Particles, 71–99 (ed. Birnstiel, M. L.) (Springer-Verlag, New York, 1988).

    Google Scholar 

  4. Zhuang, Y., Goldstein, A. M. & Weiner, A. M. Proc. natn. Acad. Sci. U.S.A. 86, 2752–2756 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Wu, J. & Manley, J. L. Genes Dev. 3, 1553–1561 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Zhuang, Y. & Weiner, A. M. Genes Dev. 3, 1545–1552 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Langford, C. J. & Gallwitz, D. Cell 33, 519–527 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Pikielny, C. W., Teem, J. L. & Rosbash, M. Cell 34, 395–403 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Parker, R., Siliciano, P. G. & Guthrie, C. Cell 49, 229–239 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Ruskin, B., Zamore, P. D. & Green, M. R. Cell 52, 207–219 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Ares, M., Jr. Cell 47, 49–59 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Igel, A. H. & Ares, M., Jr Nature 334, 450–453 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Shuster, E. O. & Guthrie, C. Cell 55, 41–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Mattaj, I. W. & DeRobertis, E. M. Cell 40, 111–118.

  15. Hamm, J., Dathan, N. A. & Mattaj, I. W. Cell 59, 159–169 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Riedel, N., Wise, J. A., Swerdlow, H., Mak, A. & Guthrie, C. Proc. natn. Acad. Sci. U.S.A. 83, 8097–9001 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Boeke, J. D., Truehart, J., Natsoulis, G. & Fink, G. R. Meth. Enzym. 154, 164–175 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Tuerk, C. et al. Proc. natn. Acad. Sci. U.S.A. 85, 1364–1368 (1987).

    Article  ADS  Google Scholar 

  19. McPheeters, D. S., Fabrizio, P. & Abelson, J. Genes Dev. 3, 2137–2150 (1989).

    Article  PubMed  Google Scholar 

  20. Pan, Z.-Q. & Prives, C. Genes Dev. 3, 1887–1898 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Mattaj, I. W. in Small Nuclear Ribonucleoprotein Particles, 100–114 (ed. Birnstiel, M. L.) (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

  22. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Evnin, L. B. & Craik, C. S. Annl N. Y. Acad. Sci. 542, 61–74 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Ares, M., Mangin, M. & Weiner, A. M. Molec. cell. Biol. 5, 1560–1570 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bact. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wise, J. A., Tollervey, D., Swerdlow, H., Dunn, E. J. & Guthrie, C. Cell 35, 743–751 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Black, D. L., Chabot, B. & Steitz, J. A. Cell 42, 737–750 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuster, E., Guthrie, C. Human U2 snRNA can function in pre-mRNA splicing in yeast. Nature 345, 270–273 (1990). https://doi.org/10.1038/345270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345270a0

  • Springer Nature Limited

This article is cited by

Navigation