Skip to main content

Advertisement

Log in

Glucagon stimulates the cardiac Ca2+ current by activation of adenylyl cyclase and inhibition of phosphodiesterase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GLUCAGON exerts positive inotropic and chronotropic effects in the heart1,2. Like its glycogenolytic effect in liver cells3, the cardiac effects of glucagon are often correlated with adenylyl cyclase stimulation2,4–7. Therefore, cyclic AMP-dependent phosphorylation of L-type Ca2+ channels8–10 might be involved in the inotropic effect of glucagon. There have been no reports, however, of the effects of glucagon on the cardiac Ca2+ current (ICa). Also, the physiological effects of glucagon could involve mechanisms other than stimulation of adenylyl cyclase11,12. Here we show that glucagon enhances ICa in frog and rat ventricular myocytes. The effect of glucagon in rats resulted from a stimulation of adenylyl cyclase. In frogs, however, the effect of glucagon on ICa was smaller and occurred at a concentration tenfold lower than in rats, and adenylyl cyclase was not modified. In addition, cAMP potentiated the effect of glucagon on ICa in frog ventricle, which correlated with the observed inhibition by glucagon of low-Km cAMP phosphodiesterase activity. Therefore, this is an example of a hormone that affects cardiac function in a similar way to a variety of synthetic cardiotonic compounds, such as milrinone and Ro-20-1724 (ref. 13). Inhibition of phosphodiesterase activity by glucagon may be essential in animals in which glucagon increases cardiac contractility but does not effectively stimulate adenylyl cyclase7,14,15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farah, A. E. & Tuttle, R. J. Pharmac. exp. Ther. 129, 49–55 (1960).

    CAS  Google Scholar 

  2. Farah, A. E. Pharmac. Rev. 35, 181–217 (1983).

    CAS  Google Scholar 

  3. Sutherland, E. W. & Rall, T. W. J. biol. Chem. 232, 1077–1091 (1958).

    CAS  PubMed  Google Scholar 

  4. Brown, H. D., Chattopadhyay, S. K. & Matthews, W. S. Naturwissenchaften 55, 181–182 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Robison, G. A., Butcher, R. W., Oye, I., Morgan, H. E. & Sutherland, E. W. Molec. Pharmac. 1, 168–177 (1965).

    CAS  Google Scholar 

  6. Murad, F. & Vaughan, M. Biochem. Pharmac. 18, 1053–1059 (1969).

    Article  CAS  Google Scholar 

  7. Chatelain, P. et al. Pflügers Arch. 397, 100–105 (1983).

    Article  CAS  Google Scholar 

  8. Hofmann, F., Nastainczyk, W., Röhrkasten, A., Scheider, T. & Sieber, M. Trends Pharmac. Sci. 8, 393–398 (1987).

    Article  CAS  Google Scholar 

  9. Hartzell, H. C. Prog. Biophys. Molec. Biol. 52, 165–247 (1988).

    Article  CAS  Google Scholar 

  10. Fischmeister, R. & Hartzell, H. C. J. Physiol., Lond. 376, 183–202 (1986).

    Article  CAS  Google Scholar 

  11. Wakelam, M. J. O., Murphy, G. J., Hruby, V. J. & Houslay, M. D. Nature 323, 68–71 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Mallat, A. et al. Nature 325, 620–622 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Beavo, J. A. Adv. Sec. Mess. Phosphoprot. Res. 22, 1–38 (1988).

    CAS  Google Scholar 

  14. Clark, C. M. et al. Endocrinology 99, 23–29 (1975).

    Article  Google Scholar 

  15. Wildenthal, K., Allen, D. O., Karlsson, J., Wakeland, J. R. & Clark, C. M. J. clin. Invest. 57, 551–558 (1976).

    Article  CAS  Google Scholar 

  16. Hazeki, O. & Ui, M. J. biol. Chem. 256, 2856–2862 (1981).

    CAS  PubMed  Google Scholar 

  17. Hartzell, H. C. & Fischmeister, R. Nature 323, 273–275 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Fischmeister, R. & Hartzell, H. C. J. Physiol., Lond. 387, 453–472 (1987).

    Article  CAS  Google Scholar 

  19. Fischmeister, R. & Hartzell, H. C. Molec. Pharmac. (in the press).

  20. Simmons, M. A. & Hartzell, H. C. Molec. Pharmac. 33, 664–671 (1988).

    CAS  Google Scholar 

  21. Masters, S. B., Harden, T. K. & Brown, J. H. Molec. Pharmac. 26, 149–155 (1984).

    CAS  Google Scholar 

  22. Buxton, I. L. O. & Brunton, L. L. J. biol. Chem. 26, 6733–6737 (1985).

    Google Scholar 

  23. Houslay, M. D. Biochem. Soc. Trans. 14, 183–193 (1985).

    Article  Google Scholar 

  24. Whittenberg, B. A., White, R. L., Ginzberg, R. D. & Spray, D. C. Circulation Res. 59, 143–150 (1986).

    Article  Google Scholar 

  25. Pollock, H. G., Hamilton, J. W., Rouse, J. B., Ebner, K. E. & Rawitch, A. B. J. biol. Chem. 263, 9746–9751 (1988).

    CAS  PubMed  Google Scholar 

  26. Pecker, F., Duvaldestin, P., Berthelot, P. & Hanoune, J. Clin. Sci. Molec. Med. 57, 313–325 (1979).

    CAS  Google Scholar 

  27. Thompson, W. J., Terasaki, W. L., Epstein, P. M. & Strada, S. J. Adv. Cyclic. Nucleotide Res. 10, 69–77 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méry, PF., Brechler, V., Pavoine, C. et al. Glucagon stimulates the cardiac Ca2+ current by activation of adenylyl cyclase and inhibition of phosphodiesterase. Nature 345, 158–161 (1990). https://doi.org/10.1038/345158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345158a0

  • Springer Nature Limited

This article is cited by

Navigation