Skip to main content
Log in

Female sticklebacks use male coloration in mate choice and hence avoid parasitized males

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AN important problem in evolutionary biology since the time of Darwin has been to understand why females preferentially mate with males handicapped by secondary sexual ornaments1–3. One hypothesis of sexual selection theory is that these ornaments reliably reveal the male's condition4–6, which can be affected for example by parasites4,7–13. Here we show that in the three-spined stickleback (Gasterosteus aculeatus) the intensity of male red breeding coloration positively correlates with physical condition. Gravid females base their active mate choice on the intensity of the male's red coloration. Choice experiments under green light prevent the use of red colour cues by females, and males that were previously preferred are now chosen no more than randomly, although the courtship behaviour of the males remains unchanged. Parasitieation causes a deterioration in the males' condition and a decrease in the intensity of their red coloration. Tests under both lighting conditions reveal that the females recognize the formerly parasitized males by the lower intensity of their breeding coloration. Female sticklebacks possibly select a male with a good capacity for paternal care14 but if there is additive genetic variation for parasite resistance, then they might also select for resistance genes, as proposed by Hamilton and Zuk4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury, J. W. & Andersson, M. B. (eds) Sexual Selection: Testing the Alternatives (Wiley, New York, 1987).

  2. Kirkpatrick, M. Ann. Rev. Ecol. Syst. 18, 43–70 (1987).

    Article  Google Scholar 

  3. Maynard-Smith, J. J. theor. Biol. 115, 1–8 (1985).

    Article  MathSciNet  Google Scholar 

  4. Hamilton, W. D. & Zuk, M. Science 218, 384–387 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Zahavi, A. J. theor. Biol. 53, 205–214 (1975).

    Article  CAS  Google Scholar 

  6. Andersson, M. Biol. J. Linn. Soc. 17, 375–393 (1982).

    Article  Google Scholar 

  7. Read, A. F. Nature 328, 68–70 (1987).

    Article  ADS  Google Scholar 

  8. Ward, P. I. Anim. Behav. 36, 1210–1215 (1988).

    Article  Google Scholar 

  9. Ward, P. I. Oikos 55, 428–429 (1989).

    Article  Google Scholar 

  10. Read, A. F. & Harvey, P. H. Nature 339, 618–620 (1989).

    Article  ADS  Google Scholar 

  11. Pomiankowski, A. Nature 338, 115–116 (1989).

    Article  ADS  Google Scholar 

  12. Endler, J. A. & Lyles, A. M. Trends Ecol. Evol. 4, 246–248 (1989).

    Article  CAS  Google Scholar 

  13. Read, A. Trends Ecol. Evol. 3, 97–101 (1988).

    Article  CAS  Google Scholar 

  14. Heywood, J. S. Evolution 43, 1387–1397 (1989).

    Article  Google Scholar 

  15. Brush, A. H. & Reisman, H. M. Comp. Biochem. Physiol. 14, 121–125 (1965).

    Article  CAS  Google Scholar 

  16. Semler, D. E. J. Zool. 165, 291–302 (1971).

    Article  Google Scholar 

  17. Endler, J. A. Evolution 34, 76–91 (1980).

    Article  Google Scholar 

  18. Endler, J. A. Env. Biol. Fish. 9, 173–190 (1983).

    Article  Google Scholar 

  19. Kodric-Brown, A. Behav. Ecol. Sociobiol. 17, 199–205 (1985).

    Article  Google Scholar 

  20. Houde, A. E. Evolution 41, 1–10 (1987).

    Article  Google Scholar 

  21. Houde, A. E. Anim. Behav. 36, 510–516 (1988).

    Article  Google Scholar 

  22. Kennedy, C. E. J., Endler, J. A., Poynton, S. L. & McMinn, H. Behav. Ecol. Sociobiol. 21, 291–295 (1987).

    Article  Google Scholar 

  23. Bischoff, R. J., Gould, J. L. & Rubenstein, D. I. Behav. Ecol. Sociobiol. 17, 253–255 (1985).

    Article  Google Scholar 

  24. Wootton, R. J. The Biology of the Sticklebacks (Academic, London, 1976).

    Google Scholar 

  25. ter Pelkwijk, J. J. & Tinbergen, N. Z. Tierpsychol. 1, 193–200 (1937).

    Article  Google Scholar 

  26. van lersel, J. J. A. Behaviour Suppl. 3, 1–159 (1953).

    Google Scholar 

  27. Sevenster, P. Behaviour Suppl. 9, 1–170 (1961).

    Google Scholar 

  28. Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (Freeman, New York, 1981).

    MATH  Google Scholar 

  29. Long, K. D. & Houde, A. E. Ethology 82, 316–324 (1989).

    Article  Google Scholar 

  30. Smyth, J. D. Introduction to Animal Parasitology (Hodder and Stoughton, London, 1985).

    Google Scholar 

  31. Reisman, H. M. Copeia 1968, 816–826 (1968).

    Article  Google Scholar 

  32. Bakker, T. C. M. Behaviour 98, 1–144 (1986).

    Article  Google Scholar 

  33. McLennan, D. A. & McPhail, J. D. Can. J. Zool. 67, 1767–1777 (1989).

    Article  Google Scholar 

  34. Cronly-Dillon, J. & Sharma, S. C. J. exp. Biol. 49, 679–687 (1968).

    CAS  PubMed  Google Scholar 

  35. McCallum, H. I. Parasitology 85, 475–488 (1982).

    Article  Google Scholar 

  36. Price, D. J. J. Fish Biol. 26, 509–519 (1985).

    Article  Google Scholar 

  37. Bolger, T. & Connolly, P. L. J. Fish Biol. 34, 171–182 (1989).

    Article  Google Scholar 

  38. Miller, R. G. Jr Beyond ANOVA, Basics of Applied Statistics (Wiley, New York, 1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milinski, M., Bakker, T. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344, 330–333 (1990). https://doi.org/10.1038/344330a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344330a0

  • Springer Nature Limited

This article is cited by

Navigation