Skip to main content
Log in

Thermal entrainment by deflected mantle plumes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HOTSPOTS are thought to result from deep mantle plumes, perhaps representing an ancient geochemical source isolated from the uppermost mantle. As they rise through the mantle, thermal plumes entrain surrounding material by thermal conduction, and small plumes or narrow plume conduits may consist of only a small fraction of original source material. Here we present new experimental results which show this effect dramatically for plume conduits that are deflected horizontally by shear flow in the mantle beneath lithospheric plates. Thermally entrained material can become concentrated at the centre of a plume (or surface hotspot trace) with original source material in the periphery. Also, the diapiric instability observed in chemical plume conduits is suppressed by thermal entrainment. Varying degrees of geochemical enrichment observed at hotspots such as the Galapagos Islands may result from thermal entrainment, implying that mantle plumes are driven by thermal (rather than compositional) buoyancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan, W. J. Geol. Soc. Am. Mem. 132, 7–32 (1972).

    Google Scholar 

  2. Morgan, W. J. in The Sea (ed. Emiliani, C.) 443–487 (Wiley, New York, 1981).

    Google Scholar 

  3. Parmentier, E. M. et al. J. geophys. Res. 80, 4417–4424 (1975).

    Article  ADS  Google Scholar 

  4. Yuen, D. A. & Schubert G. J. geophys. Res. 81, 2499–2510 (1976).

    Article  ADS  Google Scholar 

  5. Olson, P. et al. Nature 327, 409–413 (1987).

    Article  ADS  Google Scholar 

  6. Whitehead, J. A. & Luther, D. S. J. geophys. Res. 80, 705–717 (1975).

    Article  ADS  Google Scholar 

  7. Skilbeck, J. N. & Whitehead, J. A. Nature 272, 499–501 (1978).

    Article  ADS  Google Scholar 

  8. Olson, P. & Singer, H. A. J. Fluid Mech. 166, 511–531 (1985).

    Article  ADS  Google Scholar 

  9. Olson, P. & Nam, I. S. J. geophys. Res. 91, 7181–7191 (1986).

    Article  ADS  Google Scholar 

  10. Whitehead, J. A. & Helfrich, K. R. Nature 336, 59–61 (1988).

    Article  ADS  Google Scholar 

  11. Griffiths, R. W. J. Fluid Mech. 166, 115–138 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Griffiths, R. W. Phys. Earth planet. Inter. 43, 261–273 (1986).

    Article  ADS  Google Scholar 

  13. Richards, M. A. & Griffiths, R. W. Geophys. J. R. astr. Soc. 94, 367–376 (1988).

    Article  Google Scholar 

  14. Griffiths, R. W. & Richards, M. W. Geophys. Res. Lett. 16, 437–440 (1989).

    Article  ADS  Google Scholar 

  15. Loper, D. E. & Stacey, F. D. Phys. Earth planet. Inter. 33, 304–317 (1983).

    Article  ADS  Google Scholar 

  16. Davies, G. F. Geophys. J. R. astr. Soc. 49, 459–486 (1977).

    Article  ADS  Google Scholar 

  17. Whitehead, J. A. Geophys. J. R. astr. Soc. 70, 415–433 (1982).

    Article  ADS  Google Scholar 

  18. Geist, D. J. et al. Nature 333, 657–660 (1988).

    Article  ADS  Google Scholar 

  19. Zindler, A. & Hart S. A. Rev. Earth planet. Sci. 14, 493–571 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, M., Griffiths, R. Thermal entrainment by deflected mantle plumes. Nature 342, 900–902 (1989). https://doi.org/10.1038/342900a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342900a0

  • Springer Nature Limited

This article is cited by

Navigation