Skip to main content

Advertisement

Log in

X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

KNOWLEDGE of the tertiary structure of the proteinase from human immunodeficiency virus HIV-1 is important to the design of inhibitors that might possess antiviral activity and thus be useful in the treatment of AIDS1. The conserved Asp–Thr/Ser–Gly sequence in retroviral proteinases2 suggests that they exist as dimers similar to the ancestor proposed for the pepsins3–5. Although this has been confirmed by X-ray analyses of Rous sarcoma virus and HIV-1 proteinases6,7, these structures have overall folds that are similar to each other only where they are also similar to the pepsins8. We now report a further X-ray analysis of a recombinant HIV-1 proteinase at 2.7 Å resolution. The polypeptide chain adopts a fold in which the N- and C-terminal strands are organized together in a four-stranded β-sheet. A helix precedes the single C-terminal strand, as in the Rous sarcoma virus proteinase6 and also in a synthetic HIV-1 proteinase, in which the cysteines have been replaced by α-aminobutyric acid9. The structure reported here provides an explanation for the amino acid invariance amongst retroviral proteinases, but differs from that reported earlier7 in some residues that are candidates for substrate interactions at P3, and in the mode of intramolecular cleavage during processing of the polyprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohl, N. E. et al. Proc. natn. Acad. Sci. U.S.A. 85, 4686–4690 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Toh, H. Ono, M., Saigo, K. & Miyata, T. Nature 315, 691 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Tang, J., James, M. N. G., Hau, I.-N., Jenkins, J. A. & Blundell, T. L. Nature 271, 618–621 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Pearl, L. H. & Taylor, W. R. Nature 329, 351–354 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Blundell, T. L. et al. Eur. J. Biochem. 172, 513–520 (1988).

    Article  CAS  Google Scholar 

  6. Miller, M., Jaskolski, M., Rao, J. K. M., Leis, J. & Wlodawer, A. Nature 337, 576–579 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Navia, M. A. et al. Nature 337, 615–620 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Blundell, T. L. & Pearl, L. H. Nature 337, 596–597 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Wlodawer, A. et al. Science 245, 616–621 (1989).

    Article  ADS  CAS  Google Scholar 

  10. McKeever, B. M. et al. J. biol. Chem. 264, 1919–1921 (1989).

    CAS  PubMed  Google Scholar 

  11. Blundell, T. L., Jenkins, J. A., Pearl, L.-H., Sewell, T. & Pedersen, V. in Aspartic Proteinases and Their Inhibitors (ed. Kostka, V.) 151–161 (de Gruyter, Berlin, 1985).

    Google Scholar 

  12. James, M. N. G. & Sielecki, A. J. molec. Biol. 163, 299–361 (1983).

    Article  CAS  Google Scholar 

  13. Pearl, L. H. & Blundell, T. L. FEBS Lett. 174, 96–101 (1984).

    Article  CAS  Google Scholar 

  14. Bott, R., Subramanian, E. & Davies, D. R. Biochemistry 21, 6956–6962 (1982).

    Article  CAS  Google Scholar 

  15. James, M. N. G., Sielecki, A. R., Salituro, F., Rich, D. H. & Hofmann, T. Proc. natn. Acad. Sci. U.S.A. 79, 6137–6142 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Blundell, T. L. et al. Biochemistry 26, 5585–5590 (1987).

    Article  CAS  Google Scholar 

  17. Weber, I. T. et al. Science 243, 928–931 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Ratner, L. et al. Nature 313, 277–284 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Franke, A. E. Eur. Patent 0147178 (1985).

  20. Haneef, I., Moss, D. S., Stanford, M. J. & Borkakoti, N. Acta crystallogr. A41, 426–433 (1985).

    Article  CAS  Google Scholar 

  21. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapatto, R., Blundell, T., Hemmings, A. et al. X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature 342, 299–302 (1989). https://doi.org/10.1038/342299a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342299a0

  • Springer Nature Limited

This article is cited by

Navigation