Skip to main content
Log in

Genetic relatedness in primitively eusocial wasps

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SOCIAL insects are characterized by indirect reproduction, in which most individuals achieve genetic success by helping to rear the offspring of colony mates. The evolution of such systems is expected to be sensitive to the genetic relatedness of colony mates. In general, reproductive altruism evolves most easily when relatedness is high, although it could be maintained under regimes of low relatedness after morphologically distinct castes have evolved1,2. Most social insects belong to the order Hymenoptera, and are therefore haplodiploid (males haploid, females diploid); this genetic system may favour the evolution of altruism because it makes rearing a full sister (r = ¾) genetically more valuable than rearing one's own offspring (r = ½) (refs 1–3). Here we report new estimates of relatedness from 14 species of polistine wasps lacking morphological castes. Female colony mates are often not full sisters and therefore seldom realize the full advantage made possible by haplodiploidy. But relatedness is always fairly high, in striking contrast to the situation in some species with morphological castes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton, W. D. J. theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Hamilton, W. D. A. Rev. Ecol. Syste. 3, 193–232 (1972).

    Article  Google Scholar 

  3. Trivers, R. L. & Hare, H. Science 191, 249–263 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Craig, R. & Crazier, R. H. Evolution 33, 335–341 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Pamilo, P. & Varvio-Aho, S.-L. Behav. Ecol. Sociobiol. 6, 91–98 (1979).

    Article  Google Scholar 

  6. Pamilo, P. & Crozier, R. H. Theor. Popul. Biol. 21, 171–193 (1982).

    Article  Google Scholar 

  7. Pamilo, P. Genetics 107, 307–320 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Queller, D. C. & Goodnight, K. F. Evolution 43, 258–275 (1989).

    Article  PubMed  Google Scholar 

  9. Crozier, R. H., Smith, B. H. & Crozier, Y. C. Evolution 41, 902–910 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Kukuk, P. F. in Genetics of Social Evolution (eds Breed, M. D. & Page, R. E.) 183–202 (Westview, Boulder, 1989).

    Google Scholar 

  11. Schwarz, M. P. Behav. Ecol. Sociobiol. 21, 387–392 (1987).

    Article  Google Scholar 

  12. Ross, K. G. & Matthews, R. W. Amer. Nat. (in the press).

  13. Pardi, L. Boll. 1st. Entom. Univ. Bologna 15, 25–84 (1942).

    Google Scholar 

  14. West-Eberhard, M. J. Misc. Publ. Mus. Zool. Univ. Mich. 140, 1–101 (1969).

    Google Scholar 

  15. Litte, M. Behav. Ecol. Sociobiol. 2, 229–246 (1977).

    Article  Google Scholar 

  16. Strassmann, J. E. Z. Tierpsychol. 69, 141–148 (1985).

    Article  Google Scholar 

  17. Metcalf, R. A. & Whitt, G. S. Behav. Ecol. Sociobiol. 2, 339–351 (1977).

    Article  Google Scholar 

  18. Lester, L. J. & Selander, R. K. Amer. Nat. 117, 147–176 (1981).

    Article  Google Scholar 

  19. Queller, D. C., Strassmann, J. E. & Hughes, C. R. Science 242, 1155–1157 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Strassmann, J. E. Science 204, 207–209 (1979).

    Article  ADS  Google Scholar 

  21. Frumhoff, P. C. & Schneider, S. Anim. Behav. 35, 255–262 (1986).

    Article  Google Scholar 

  22. Page, R. E., Robinson, G. E. & Fondrk, M. K. Nature 338, 576–579 (1989).

    Article  ADS  Google Scholar 

  23. Gamboa, G. J., Reeve, H. K. & Pfennig, D. W. A. Rev. Entomol. 31, 431–454 (1986).

    Article  Google Scholar 

  24. Metcalf, R. A. & Whitt, G. S. Behav. Ecol. Sociobiol. 2, 353–360 (1977).

    Article  Google Scholar 

  25. Noonan, K. M. in Natural Selection and Social Behavior (eds Alexander, R. D. & Tinkle, D. W.) 18–44 (Chiron, New York, 1981).

    Google Scholar 

  26. Strassmann, J. E., Queller, D. C. & Hughes, C. R. Ecology 69, 1497–1505 (1988).

    Article  Google Scholar 

  27. Queller, D. C. Proc. natn. Acad. Sci. U.S.A. 86, 3224–3226 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Ross, K. G. Nature 323, 398–400 (1986).

    Article  Google Scholar 

  29. Pamilo, P. Heredity 48, 95–106 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Pearson, B. Behav. Ecol. Sociobiol. 12, 1–4 (1983).

    Article  CAS  Google Scholar 

  31. Ross, K. G. & Fletcher, D. J. C. Behav. Ecol. Sociobiol. 17, 349–356 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strassmann, J., Hughes, C., Queller, D. et al. Genetic relatedness in primitively eusocial wasps. Nature 342, 268–270 (1989). https://doi.org/10.1038/342268a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342268a0

  • Springer Nature Limited

This article is cited by

Navigation