Skip to main content
Log in

Fluvial valleys and martian palaeoclimates

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NETWORKS of small fluvial valleys are extensively developed throughout the ancient heavily cratered terrains of Mars1–3. The existence of the valleys has been cited as compelling evidence for a relatively dense primordial atmosphere capable of maintaining an Earth-like hydrological cycle. Theoretical models of early atmospheric evolution4,5 describe the maintenance of a dense CO2 atmosphere and a warm, wet climate until the end of the heavy-bombardment phase of impacting. However, the presence of very young, Earth-like fluvial valleys on the northern flank of Alba Patera6–8 conflicts with this scenario. Whereas the widespread ancient martian valleys generally have morphologies indicative of sapping erosion by the slow outflow of subsurface water9,3, the local Alba valleys were probably formed by surface-runoff processes. Because subsurface water flow might be maintained by hydro-thermal energy inputs10,11 and because surface-runoff valleys developed late in martian history, when planet-wide climatic conditions were presumably similar to the present, it is not necessary to invoke drastically different planet-wide climatic conditions to explain valley development on Mars. The Alba fluvial valleys can be explained by hydrothermal activity or outflow-channel discharges that locally modified the atmosphere inducing precipitation and local overland flow on low-permeability volcanic ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pieri, D. Icarus 27, 941–952 (1976).

    Article  Google Scholar 

  2. Carr, M. & Clow, G. Icarus 48, 91–117 (1981).

    Article  ADS  Google Scholar 

  3. Baker, V. R. The Channels of Mars (University of Texas Press, Austin, 1982).

    Google Scholar 

  4. Pollack, J. B. & Toon, O. B. Icarus 50, 259–287 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. Icarus 71, 203–224 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Gulick, V. C. & Baker, V. R. 18th Lunar Planet. Sci Conf. 639–640 (Lunar and Planetary Institute, Houston, 1987).

    Google Scholar 

  7. Gulick, V. C. & Baker, V. R. Proc. 4th Int. Conf. Mars 121–122 (1989).

    Google Scholar 

  8. Gulick, V. C. & Baker, V. R. J. geophys. Res. (submitted).

  9. Pieri, D. Science 210, 895–897 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Brakenridge, G. R., Newsom, H. E. & Baker, V. R. Geology 13, 859–862 (1985).

    Article  ADS  Google Scholar 

  11. Gulick, V. C., Marley, M. S. & Baker, V. R. 19th Lunar Planet. Sci. Conf. 441–442 (Lunar and Planetary Institute, Houston, 1988).

    Google Scholar 

  12. Barlow, N. G. Icarus 75, 285–305 (1988).

    Article  ADS  Google Scholar 

  13. Scott, D. H. & Tanaka, K. L. U.S. Geol. Surv. Geologic Series Map I-1802-A, scale 1:15,000,000 (U.S. Geological Survey, Denver, 1986).

    Google Scholar 

  14. Grant, J. A. NASA Tech. Memo. 89871, 1–286 (National Aeronautics and Space Administration, Washington, DC, 1987).

    Google Scholar 

  15. Baker, V. R. & Partridge, J. B. J. geophys. Res. 91, 3561–3572 (1986).

    Article  ADS  Google Scholar 

  16. Gregory, K. J. in Geomorphology and Climate (ed. Derbyshire, E.) 289–315 (Wiley, New York, 1976).

    Google Scholar 

  17. Laity, J. & Malin, M. Geol. Surv. Am. Bull. 96, 203–217 (1985).

    Article  Google Scholar 

  18. Neukum, G. & Hiller, K. J. geophys. Res. 86, 3097–3121 (1981).

    Article  ADS  Google Scholar 

  19. Hartmann, W. K. et al. in Basaltic Volcanism on the Terrestrial Planets (eds Basaltic Volcanism Study Project) 1049–1127 (Pergamon, New York, 1982).

    Google Scholar 

  20. Wetherill, G. W. Proc. 8th Lunar Planet. Sci. Conf. (ed. Merrill, R.) 1–16 (Pergamon, New York, 1977).

    Google Scholar 

  21. Mouginis-Mark, P. J., Wilson, L. & Zimbleman, J. R. Bull. Volcanology 50, 361–379 (1988).

    Article  ADS  Google Scholar 

  22. Gulick, V. C. thesis, Univ. of Arizona, 1987.

  23. Baker, V. R. NASA Tech. Memo. 88383, 414–416 (National Aeronautics and Space Administration, Washington, DC, 1986).

    Google Scholar 

  24. Kochel, R. C. & Piper, J. F. J. geophys. Res. 91, E175–E192 (1986).

    Article  ADS  Google Scholar 

  25. Carr, M. J. Icarus 56, 476–495 (1983).

    Article  ADS  Google Scholar 

  26. Carr, M. J. Nature 326, 30–34 (1987).

    Article  ADS  Google Scholar 

  27. Clow, G. D. Icarus 72, 95–127 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Lucchitta, B., Ferguson, H. & Summers, C. J. geophys. Res. 91, E166–E174 (1986).

    Article  ADS  Google Scholar 

  29. Wu, C. S. NASA Tech. Memo. 88383, 614–617 (National Aeronautics and Space Administration, Washington, DC, 1986).

    Google Scholar 

  30. Thomas, P. & Ververka, J. J. geophys. Res. 84, 8131–8146 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulick, V., Baker, V. Fluvial valleys and martian palaeoclimates. Nature 341, 514–516 (1989). https://doi.org/10.1038/341514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341514a0

  • Springer Nature Limited

This article is cited by

Navigation